SÍNTESE, CARACTERIZAÇÃO E MODELAGEM MOLECULAR DE [M(OH2)2(NCS)2(nico)2] (M = MnII, FeII)

  • Lucas Gian Fachini Universidade Federal do Paraná
  • Gabriel Barros Baptistella Universidade Federal do Paraná
  • Francielli Sousa Santana Universidade Federal do Paraná
  • Gregory Moro de Macedo Calvitti Universidade Federal do Paraná
  • Giovana Gioppo Nunes Universidade Federal do Paraná
  • Eduardo Lemos de Sá Universidade Federal do Paraná
Palavras-chave: FT, Tiocianato, Nicotinamida, Manganês (ІІII), Ferro (IIІІ)

Resumo

Este trabalho relata a preparação de dois compostos de coordenação de fórmula geral [M(OH2)2(NCS)2(nico)2], em que nico = 3-piridinacarboxiamida e M = manganês(ІІII) (A) e ferro(ІІ) (B). Estes compostos foram caracterizados por técnicas espectroscópicas (IV e UV-vis) e por difração de raios X de monocristal. As estruturas eletrônicas de A e B foram estudas através da Teoria do Funcional de Densidade (DFT) e do hamiltoniano semiempírico INDO/S, determinando-se a multiplicidade de spin do estado fundamental por meio das investigações das energias de campo autoconsistente e dos espectros eletrônicos UV-vis teóricos e experimentais. Os resultados indicam que as multiplicidades de spin dos compostos A e B são, respectivamente, S = 2 e S = 5/2. Houve boa concordância entre os espectros experimentais e aqueles obtidos por meio de modelagem molecular, o que reforça a sua utilização como ferramenta exploratória no estudo de compostos inorgânicos e de novos materiais.

Biografia do Autor

Lucas Gian Fachini, Universidade Federal do Paraná
Departamento de Química, UFPR.
Gabriel Barros Baptistella, Universidade Federal do Paraná
Departamento de Química, UFPR.
Francielli Sousa Santana, Universidade Federal do Paraná
Departamento de Química, UFPR.
Gregory Moro de Macedo Calvitti, Universidade Federal do Paraná
Departamento de Química, UFPR.
Giovana Gioppo Nunes, Universidade Federal do Paraná
Departamento de Química, UFPR.
Eduardo Lemos de Sá, Universidade Federal do Paraná
Departamento de Química, UFPR.

Referências

ONNER, G. E.; WIJKSTROM-FREI, C.; RANDELL, S. H.; FERNANDEZ, V. E.; SALATHE, M. The lactoperoxidase system links anion transport to host defense in cystic fibrosis. FEBS Letters, v. 581, n. 2, p. 271–278, 2007.

DIAS, D. A.; KOUREMENOS, K. A.; BEALE, D. J.; CALLAHAN, D. L.; JONES, O. A. H. Metal and metalloid containing natural products and a brief overview of their applications in biology, biotechnology and biomedicine. BioMetals, v. 29, n. 1, p. 1–13, 2016.

GAUSSIAN. Gaussian 03. Revision C.02. Wallingford: Gaussian, 2004.

GREENFIELD, T. J.; JULVE, M.; DOYLE, R. P. Exploring the biological, catalytic, and magnetic properties of transition metal coordination complexes incorporating pyrophosphate. Coordination Chemistry Reviews, v. 384, p. 37–64, 2019.

HAY, P. J.; WADT, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, v. 82, n. 1, p. 299–310, 1985.

MACKAY, D.; HATHCOCK, J.; GUARNERI, E. Niacin: chemical forms, bioavailability, and health effects. Nutrition Reviews, v. 70, n. 6, p. 357-366, 2012.

MARDIROSSIAN, N.; HEAD-GORDON, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Molecular Physics, v. 115, n. 19, p. 2315-2372, 2017.

MISSINA, J. M. et al. Effects of decavanadate salts with organic and inorganic cations on escherichia coli, giardia intestinalis, and vero cells. Inorganic Chemistry, v. 57, n. 19, p. 11930-11941, 2018.

POČKAJ, M.; KITANOVSKI, N.; ČEH, B.; CERC-KOROŠEC, R. CCDC 1498589: experimental crystal structure determination. 2017a. Disponível em: http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc1m9dlx&sid=DataCite. Acesso em: 20 fev. 2019.

POČKAJ, M.; KITANOVSKI, N.; ČEH, B.; CERC-KOROŠEC, R. CCDC 1498590: experimental crystal structure determination. 2017b. Disponível em:http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc1m9dmy&sid=DataCite. Acesso em: 20 fev. 2019.

POČKAJ, M.; KITANOVSKI, N.; ČEH, B.; CERC-KOROŠEC, R. [MII(NCS)2(nia)2(OH2)2]: preparation, crystal structure and thermal properties (MII = Mn, Fe; nia = nicotinamide). Acta Chimica Slovenica, v. 64, n. 2, p. 342–348, 2017c.

RIDLEY, J.; ZERNER, M. An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theoretica Chimica Acta, v. 32, n. 2, p. 111-134, 1973.

RULÍŠEK, L.; VONDRÁŠEK, J. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. Journal of Inorganic Biochemistry, v. 71, n. 3-4, p. 115-127, 1998.

SANGHAMITRA, N. J. M.; ADWANKAR, M. K.; JUVEKAR, A. S.; KHURAJJAM, V.; WYCLIFF, C.; SAMUELSON, A. G. Copper(I) complexes of modified nucleobases and vitamin B3 as potential chemotherapeutic agents: In vitro and in vivo studies. Indian Journal of Chemistry, v. 50A, n. 03-04, p. 465-473, mar./apr. 2011.

SIGNORELLA, S.; HUREAU, C. Bioinspired functional mimics of the manganese catalases. Coordination Chemistry Reviews, v. 256, n. 11-12, p. 1229-1245, 2012.

STEPHENS, P. J.; DEVLIN, F. J.; CHABALOWSKI, C. F.; FRISCH, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, v. 98, n. 45, p. 11623–11627, 1994.

STEWART, J. J. P. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, n. 12, p. 1173-1213, dec. 2007. DOI 10.1007/s00894-007-0233-4.

ZHAO, Y.; TRUHLAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, v. 120, n. 1-3, p. 215–241, 2008.

Publicado
2019-06-24