Tratamento de água residuária da bovinocultura com reator UASB operado à temperatura mesófila: novas abordagens para o setor de bioenergia

Palavras-chave: Digestão anaeróbia, Biogás, Metano, Controle de poluição

Resumo

Métodos de engenharia devem ser constantemente atualizados para promover avanços construtivos, econômicos e sustentáveis. Neste estudo, novos dados sobre valorização energética e tratamento de águas residuárias de bovinos por meio de um reator UASB operado a 40°C foram obtidos. Foi aplicado um regime de alimentação semi-contínuo, com tempos de retenção hidráulica de 6, 5, 3 e 2 dias, e taxas de carga orgânica de 4, 5, 7 e 11 kg COD m-3 d-1. Foram registrados volumes de gás de até 1,5 m³ de biogás m-3 de reator d-1, com concentrações de metano variando entre 69% e 75%. Remoções eficientes de matéria orgânica de 60-80% (DQO total) e 50-75% (DQO solúvel) resultaram em rendimentos de metano de 0,16-0,18 m³ CH4 kg-1 de DQO total e 0,4-0,5 m³ CH4 kg-1 de DQO solúvel. Não ocorreu acúmulo de ácidos graxos voláteis em nenhuma etapa, e os valores de pH e alcalinidade permaneceram dentro da faixa ideal para o desenvolvimento do processo de digestão anaeróbica. O reator UASB demonstrou produção significativa de biogás e eficiência razoável na remoção de sólidos e matéria orgânica, indicando-o como uma nova opção para o tratamento de águas residuárias com alta concentração de poluentes com o benefício da produção de energia limpa.

Biografia do Autor

Henrique Vieira de Mendonça, Universidade Federal de Juiz de Fora
Graduação em Engenharia Agrícola e Ambiental pela Universidade Federal de Viçosa (2008), Graduação em Ciências Biológicas pela UNINCOR (2014). Mestre em Ecologia Aplicada ao Manejo e Conservação de Recursos Naturais pela Universidade Federal de Juiz de Fora (2011). Doutorando em Ecologia Aplicada ao Manejo e Conservação de Recursos Naturais pela Universidade Federal de Juiz de Fora - Departamento de Biologia/Programa de pós graduação em Ecologia (PGECOL).
Anderson Gomide Costa, UFRRJ
Engenheiro Agrícola formado em Dezembro de 2009 pela Universidade Federal de Lavras. Possui mestrado em Engenharia Agrícola com ênfase em máquinas e automação agrícola pela da Universidade Federal de Lavras (2011) e doutorado em Engenharia Agrícola na área de máquinas e mecanização agrícola pela Universidade Federal de Viçosa (2015). Atualmente é professor adjunto do quadro efetivo da Universidade Federal Rural do Rio de Janeiro vinculado ao departamento de Engenharia, atuando na área de máquinas agrícolas e agricultura de precisão. É docente permanente e Coordenador do Programa de Pós-graduação em Engenharia Agrícola e Ambiental da Universidade Federal Rural do Rio de Janeiro. Desenvolve pesquisas nas áreas de máquinas e implementos agrícolas, agricultura de precisão, visão artificial de máquinas, processamento de imagem e biospeckle laser.
Jacob Santana, UFRRJ
Estudante de mestrado em engenharia agricola e aambiental.
Mônica Silva dos Santos, UFRRJ
Docente de Mestrado em Engenharia Agrícola e Ambiental da UFRRJ, Seropédica (RJ), Brasil.

Referências

ABUBAKAR, B.; ISMAIL N. Anaerobic digestion of cow dung for biogas production. J. Eng. Appl. Sci. 7: 169-172, 2012.

APHA - American Public Health Association; American Waterworks Association - AWWA; Water Environment Federation - WEF. 2012. Standard Methods for the Examination of Water and Waste Water. 22.ed. Washington, APHA; AWWA; WEF, 1.220 p.

CASTANO, J.M. et al. Performance of a Small-Scale, Variable Temperature Fixed Dome Digester in a Temperate Climate. Energies. 7: 5701-5716. 2014.

CASTRILLON, L. et al. Anaerobic thermophilic treatment of cattle manure in UASB reactors. Waste Manage. Res. 20: 350-356, 2002.

COMINO, E.; et al. Development of a pilot scale anaerobic digester for biogas production from cow manure and whey mix. Bioresour. Technol. 100: 5072-5078, 2009.

DAREIOTI, M.A. et al. Exploitation of olive mill wastewater and liquid cow manure for biogas production. Waste Manage. 30: 1841-1848, 2010.

DEMIRER, G.; CHEN, S. Two-Fase anaerobic digestion of unscreened dairy manure. Proc. Biochem. 40: 3542-3549. 2005 (a).

DEMIRER, G.N.; CHEN, S. Anaerobic digestion of dairy manure in a hybrid reactor with biogas recirculation. World J. Microbiol. Biotechnol. 21: 1509-1514, 2005 (b).

DIAS, T.; FRAGOSO; R. DUARTE, E. Anaerobic co-digestion of dairy cattle manure and pear waste. Bioresour. Technol. 164, 420-423, 2009.

FAO. 2013. The Statistics Division of the FAO (Food and Agriculture Organization of the Uninited Nations). Accessed Jan. 25, 2022. http://faostat.fao.org.

FAO. 2015. The Statistics Division of the FAO (Food and Agriculture Organization of the Uninited Nations). (2015). Accessed Mar. 12, 2022. http://faostat.fao.org.

FERRER I, GARFÍ M, UGGETTI E, FERRER-MARTÍ L, CALDERON, A VELO, E. 2011. Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenergy. 35: 1668-1674, 2011.

GELEGENIS, J. et al. 2007. Optimization of biogas production from alive-oil mil wastewater, by DQO igesting whith diluted poultry- manure. Applied Energy. 84: 646-663, 2007.

GERARDI, M.H. The Microbiology of Anaerobic Digesters. John Wiley & Sons, Inc., Hoboken, NJ, 2003.

GHAZI, A. T. M. et al. Preliminary design of oscillatory flow biodiesel reactor for continuous biodiesel production from jatropha triglycerides. J. Eng. Sci. Technol. 3: 138-145, 2008.
GRADY, C.P.L.JR.; LIM, H.C. Biological Waste Treatment. New York: Marcel Dekker, 1980.

HARIKISHAN, S.; SUNG, S. 2003. Cattle waste treatment and Class A biosolid production using temperature-Fased anaerobic digester. Adv. Environ. Res. 7 (3): 701-706, 2003.

JANSEN, P.D.; MEHTA, C.M. CARNEY; C, BATSTONE, D.J. Recovery of energy and nutrient resources from cattle paunch waste using temperature Fased anaerobic digestion. Waste Management. 51: 72-80, 2016.

KOTHARI, R. et al. Different aspects of dry anaerobic digestion for bio-energy: an overview. Renew. Sustain. Energy Rev. 39: 174-195, 2014.

LEDDA, C. et al. 2015. Integration of microalgae production with anaerobic digestion of dairy cattle manure: an overall mass and energy balance of the process. J. Clean. Prod. 12: 103-112, 2015.

LOMEU, Alice Azevedo et al. Applying Ozone in Cattle Wastewater to Maximize Lipid Production in Microalgae Biomass. BioEnergy Research, p. 1-13, 2023.

MARAÑÓN, E. et al. 2006. Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization. Journal of the Air & Waste Management Association. 56: 137-143, 2006.

MARAÑÓN, E. et al. The influence of hydraulic residence time on treatment of cattle manure in UASB reactors. Waste Management & Research 19: 436-441, 2011.

MCNAMARA, C.J. et al. 2008. Bioremediation of olive mil wastewater. International Biodeterioration and Biodegradation. 61: 127-134, 2008.

METCALF & EDDY. Wastewater engineering: treatment, disposal and reuse. 4. ed. New York: McGraw - Hill, 1878 p, 2003.

MOURI, G. AND AISAKI, N. 2015. Using land-use management policies to reduce the environmental impacts of livestock farming. Ecological Complexity. 22: 169-177, 2015.

NASIR, I.M.; MOHD, GHAZI T.I.; OMAR, R. Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng. Life Sci. 12: 258-269, 2012.

NICODEMO, M.L.F. Cálculo de misturas minerais para bovinos. Empresa Brasileira de Pesquisa Agropecuária: Documentos 109, 1. ed. 25 p, 2001.

NOOROLLAHI, Y. et al. Biogas production potential from livestock manure in Iran. Renew Sustain Energy. 50: 748-754, 2015.
OLIVEIRA SILVA, R. et al. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nature Clim. Chang. 6: 493-497, 2016.

OMAR, R., et al. Anaerobic treatment of cattle manure for biogas production. Proceedings Philadelphia, Annual meeting of American Institute of Chemical Engineers, Philadelphia, USA, 2008.

PARASKEVA, P. AND DIAMADOPOULOS, E. Technologies for oliver mil wastewater (OMW) treatment: a review. Journal of Chemical Technology and Biotechnology: 81: 1475-1485, 2006.

RESENDE, A.J. et al. 2015. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil. Microbial Ecology: 70, 01-12, 2015.

RICO, C. et al. Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in pilot plant. Eng. Life Sci. 11: 476-481, 2011.

SAADY, N.; MASSÉ. D. Impact of organic loading rate on psychrophilic anaerobic digestion of solid dairy manure. Energies 8: 1990-2007, 2015.

SALEK, S.S. et al. 2016. Kinetics of CaCO3 precipitation in an anaerobic digestion process integrated with silicate minerals. Ecol. Eng. 86: 105-112, 2016.

SOUZA, DENISE SALVADOR et al. New methods to increase microalgae biomass in anaerobic cattle wastewater and the effects on lipids production. Biomass and Bioenergy, v. 176, p. 106915, 2023.

SUNG, S.; SANTHA, H. Performance of temperature-Fased anaerobic digestion (TPAD) system treating dairy cattle wastes. Water Res. 37: 1628-1636, 2003.

USACK, J.G.; WIRATNI, W.; ANGENENT, L.T. Improved design of anaerobic digesters for household biogas production in indonesia: one cow, one digester, and one hour of cooking per day. Sci World J. 2014: 1-8, 2014.

WEN, Z.; LIAO, W.; CHEN, S. 2004. Hydrolysis of animal manure lignocellulosics for reducing sugar production. Biores Technol. 91(1): 31-39, 2004.

WITARSA, F.; LANSING, S. Quantifying methane production from psychrophilic anaerobic digestion of separated and unseparated dairy manure. Ecol. Eng. 78: 95-100, 2015.
Publicado
2024-07-05
Seção
Meio Ambiente