Anaerobic Digestion of Quail Effluent: Effects of Dilution and Inoculum/Substrate Ratio on Biogas Production

Keywords: Mthane, Bioenergy, Waste, Poultry, Quail Farming

Abstract

Anaerobic digestion is a promising strategy to treat quail waste since it can be transformed into biogas. However, the high yield of biogas is related to the physicochemical characteristics of the biowaste as a substrate and the reactor applied. This study evaluated biogas and methane production from quail biowaste by applying water dilution strategies and varying the inoculum/substrate ratio (ISR) from 1/1, 1/2, and 1/3 inside the batch reactors. Biogas and methane potential tests were performed with raw manure (DB), cage-washing effluent (EB), and effluent diluted in water (ED) in a 1:1 (v/v) proportion. The highest biogas yield was obtained from sample ED, with ISR of 3/1 being the best condition, resulting in 677 LN biogas kg SV-1. The methane content in the biogas ranged from 59.6% to 66.8%, with the highest value obtained from sample ED with an ISR of 2/1. However, when evaluating the accumulated production of biogas based on fresh matter (FM) instead of volatile solids (VS), it was observed that the highest yield was obtained from sample DB (80 LN biogas kg FM-1). Thus, diluting quail manure with water can increase its biogas production when the results are expressed on a VS basis, but when the results are expressed on a FM basis, the scenario changes, and the raw quail manure (DB) results in the highest values. In addition, the ISR variation improved the comprehension of possible inhibitions along the process.

Author Biographies

Jhenifer Aline Bastos, Universidade Tecnológica Federal do Paraná
Master in Environmental Technologies of the Federal Technological University of Paraná (2020), Department of Biological and Environmental Sciences, Medianeira, Paraná, Brazil.
Paula Verônica Remor, Faculdade de Engenharia da Universidade do Porto
Master in Environmental Technologies (In Portugal through the Dual Diploma Program between the Federal Technological University of Paraná and the Bragança Research Institute), PhD scholarship holder in the Postgraduate Program in Environmental Engineering, Faculty of Engineering of the University of Porto (FEUP ), Porto, Portugal.
João Henrique Lima Alino, Universidade Tecnológica Federal do Paraná
Master in Environmental Technologies from the Federal Technological University of Paraná, Department of Biological and Environmental Sciences, Medianeira, Paraná, Brazil.
Felippe Martins Damaceno, Universidade Estadual de Maringá
PhD in Agricultural Engineering from the State University of West Panará, Department of Agricultural Engineering, Cascavel, Paraná, Brazil.
Thiago Edwiges, Universidade Tecnológica Federal do Paraná
PhD in Agricultural Engineering from the State University of West Panará, Department of Agricultural Engineering, Cascavel, Paraná, Brazil.

References

ADEGHIM, M.; SARTAJ, M.; ABDEHAGH, N. Post-hydrolysis ammonia stripping as a new approach to enhance the two-stage anaerobic digestion of poultry manure: Optimization and statistical modelling. Journal of Environmental Management, v. 1, p. 115717, 2022. DOI: https://doi.org/10.1016/j.jenvman.2022.115717

ALEXANDER, S.; HARRIS, P.; MCCABE, B. K. Biogas in the suburbs: An untapped source of clean energy? Journal of Cleaner Production, v. 215, p. 1025 – 1035, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.01.118.

ANGELIDAKI, I.; ALVES, M.; BOLZONELLA, D.; BORZACCONI, L.; CAMPOS, J. L.; GUWY, A. J.; KALYUZHNYI, S.; JENICEK, P.; VAN LIER, J. B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science & Technology, v. 59, p. 927- 934, 2009. DOI: https://doi.org/10.2166/wst.2009.040.

APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, DC, 2005.

APPELS, L.; LAUWERS, J.; DEGREVE, J.; HELSEN, L.; LIEVENS, B.; WILLEMS, L.; IMPE, J. V.; DEWIL, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews, v. 15, p. 4295 – 4301, 2011. DOI: https://doi.org/10.1016/j.rser.2011.07.121.

ARRIAGADA, C. B.; SANHUEZA, P. F.; GUSMÁN-FIERRO, V. G.; MEDINA, T. I.; FERNÁNDEZ, K. F.; ROECKEL, M. D. Efficient poultry manure management: anaerobic digestion with short hydraulic retention time to achieve high methane production. Poultry Science, v. 98, p. 6636 – 6643, 2019. DOI: https://doi.org/10.3382/ps/pez516.

ATELGE, M. R.; ATABANI, A.E.; BANI, J. C.; KRISA, D.; KAYA, M.; ESKICIOGLU, C.; KUMAR, G.; LEE, C.; YILDIZ, Y.S.; UNALAN, S.; MOHANASUNDARAM, R.; DUMAN, F. A critical review of pretretament technologies to enhance anaerobic digestion and energy recovery. Fuel, v. 270, p. 117 – 494, 2020. DOI: https://doi.org/10.1016/j.fuel.2020.117494.

BASTOS, J. A.; REMOR, P. V.; ALINO, J. H. L.; FRARE, L. M.; LOFHAGEN, J. C. P.; EDWIGES, T. Hydrolysate recycling improves economic feasibility of alkaline pretreatment for bioenergy production. Journal of Environmental Chemical Engineering, v. 9, p. 105935, 2021. DOI: https://doi.org/10.1016/j.jece.2021.105935.

BENJAMIN, M.; ADAMS, T.; JOHNSTON, P. Anaerobic codigestion of hog and poultry waste. Bioresource Technology, v. 76, p. 165 – 168, 2001. DOI: https://doi.org/10.1016/S0960-8524(00)00087-0.

BRES, P.; BEILY, M. E.; YOUNG, B. J.; GASULLA, J.; BUTTI, M.; CRESPO, D.; CANDAL, R.; KOMILIS, D. Performance of semi-continuous anaerobic co-digestion of poultry manure with fruit and vegetable waste and analysis of digestate quality: A bench scale study. Waste Management, v. 82, p. 276 – 284, 2018. DOI: https://doi.org/10.1016/j.wasman.2018.10.041.

Centro Internacional de Energias Renováveis – CIBIOGAS. Panorama do biogás no Brasil 2021. Relatório Técnico n° 001/2022. Foz do Iguaçu, 2022. Disponível em: https://cibiogas.org/wp-content/uploads/2022/04/NT-PANORAMA-DO-BIOGAS-NO-BRASIL-2021.pdf. Acesso em: 29 jan. 2023.

CHEN, Y.; CHENG, J. J.; CREAMER, K. S. Inhibition of anaerobic digestion process: A review. Bioresource Technology, v. 99, p. 4044 – 4064, 2008. DOI: https://doi.org/10.1016/j.biortech.2007.01.057.

CHERNICHARO, C. A. L. Princípios do tratamento biológico de águas residuárias: Reatores anaeróbios. Universidade Federal de Minhas Gerais – UFMG, v. 5, 2007.

Compassion in Wolrd Farming – CIWF. Farm animals about quail. 2020. Disponível em: https://www.ciwf.eu/farm-animals/quail/. Acesso em: 29 jan. 2023.

DRÓŻDŻ, D.; WYSTALSKA, K.; MALIŃSKA, K.; GROSSER, A.; GROBELAK, A.; KACPRZAK, M. Management of poultry manure in Poland – Current state and future perspectives. Journal of Environmental Management, v. 264, p. 110 – 327, 2020. DOI: https://doi.org/10.1016/j.jenvman.2020.110327.

EDWIGES, T.; FRARE, L.; MAYER, B.; LINS, L.; TRIOLO, J. L.; FLOTATS, X.; COSTA, M. S. S. M. Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Management, v. 71, p. 618-625, 2018. DOI: https://doi.org/10.1016/j.wasman.2017.05.030.

GERARDI, M. H. The microbiology of anaerobic digesters. John Wiley & Sons, v. 1, 188p., 2003.

HOLLIGER, C. et al. Towards a standardization of biomethane potential tests. Water Science & Technology, v. 11, p. 2515 – 2522, 2016. DOI: https://doi.org/10.2166/wst.2016.336.

HOLM-NIELSEN, J. B.; AL SEADI, T.; OLESKOWICZ-POPIEL, P. The future of anaerobic digestion and biogas utilization. Bioresource Technology, v. 100, p. 5478 – 5484, 2009. DOI: https://doi.org/10.1016/j.biortech.2008.12.046.

Instituto Brasileiro de Geografia e Estatística. Pesquisa de Produção Agropecuária. Brasil, 202. Disponível em: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html?=&t=destaques. Acesso em: 15 jan. 2029.

JOHANNERSSON, G. H.; CROLLA, A.; LAUZON, J. D.; GILROYED, B. H. Estimation of biogas co-production potential from liquid dairy manure, dissolved air flotation waste (DAF) and dry poultry manure using biochemical methane potential (BMP) assay. Biocatalysis and Agricultural Biotechnology, v. 25, p. 101605, 2020. DOI: https://doi.org/10.1016/j.bcab.2020.101605.

KOMIYAMA, T.; KOBAYASHI, A.; YAHAGI, M. The chemical characteristics of ashes from cattle, swine and poultry manure. Journal of Material Cycles and Waste Management, v. 15, p. 106 – 110, 2013. DOI: https://link.springer.com/article/10.1007/s10163-012-0089-2.

KHANAL, S. Anaerobic biotechnology for bioenergy production: principles and applications. Blackwell Publishing, v. 1, 308p., 2008.

KUNZ, A.; STEIMENTZ, R. L. R.; AMARAL, A. C. do. Fundamentos da digestão anaerobia, purificação do biogás, uso e tratamento do digestato. Sbera: Embrapa Suínos e Aves, Concórdia – Santa Catarina, v. 1, 209 p., 2019. Disponível em: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1108617/fundamentos-da-digestao-anaerobia-purificacao-do-biogas-uso-e-tratamento-do-digestato. Acesso em: 29 nov. 2023.

GALVANI, F.; GAERTNER, E. Adequação da metodologia kjeldahl para determinação de nitrogênio total e proteína bruta. Corumbá: Embrapa Pantanal, 2006. Disponível em: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/812198/1/CT63.pdf. Acesso em: 31 jan. 2023.

RANDALL, M.; BOLLA, G. Raising Japanese Quail. Primefacts, v. 2, p. 1 – 5, 2008. Disponível em: http://www.doc-developpement-durable.org/file/Elevages/cailles/Raising-Japanese-quail.pdf. Acesso em: 29 jan. 2023.

RAPOSO, F.; DE LA RUBIA, M. A.; FÉRNADEZ-CEGRÍ, V.; BORJA, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, v. 16, p. 861 – 877, 2011. DOI: https://doi.org/10.1016/j.rser.2011.09.008.

RODRIGUEZ-VERDE, I.; REGUEIRO, L.; LEMA, J. M.; CARBALLA, M. Blending bades optimization and pretreatment strategies to enhance anaerobic digestion of poultry manure. Waste Management, v. 7, p. 221 – 231, 2018. DOI: https://doi.org/10.1016/j.wasman.2017.11.002.

SILLERO, L.; SOLERA, R.; PEREZ, M. Improvement of the anaerobic digestion of sewage sludge by co-digestion with wine vinasse and poultry manure: Effect of different hydraulic retention times. Fuel, v. 321, p. 124104, 2022. DOI: https://doi.org/10.1016/j.fuel.2022.124104.

VARGAS-SÁNCHES, R. D.; TORRESCANO-URRUTIA, G. R.; IBARRA-ARIAS, F. J.; PORTIOLLO-LOERA, J. J.; RIOS-RINCON, F. G.; SÁNCHES-ESCALANTE, A. Effect of dietary supplementation with pleurotus ostreatus on growth performance and meat quality of japanese quail. Livestock Science, v. 207, p. 117 – 125, 2018. DOI: https://doi.org/10.1016/j.livsci.2017.11.015.

VDI - Fermentation of organic materials Characterisation of the substrate, sampling, collection of material data, fermentation tests: 4630. Verein Deutscher Ingenieure. DUS, 2006.

WARD, A. J.; HOBBS, P. J.; HOLLIMAN, P. J.; JONES, D. L. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, v. 99, p. 7928 – 7940, 2008. DOI: https://doi.org/10.1016/j.biortech.2008.02.044.

Published
2024-05-22
Section
Tecnologias Limpas