Atividade específica lipolítica em fungos coletados do bagaço de cana-de-açúcar

Palavras-chave: Aspergillus tubingensis, Lipases, Microbiologia, Paecilomyces formosus

Resumo

Lipases são enzimas que são capazes de catalisar reações químicas e, em específico, catalisam ligações lipídicas. Essas enzimas podem ser obtidas a partir de fungos lipolíticos que por meio de uma fonte de carbono conseguem produzir altos níveis de lipases. Fungos que foram previamente selecionados do bagaço de cana-de-açúcar foram colocados para realizar fermentação submersa utilizando como única fonte de carbono o azeite de oliva extra-virgem. O caldo produzido desses fungos foi analisado por meio de espectrofotometria utilizando como substrato o p-NPB, os resultados obtidos foram analisados por meio de estatística com 5% de significância. Com a presente pesquisa foi possível identificar fungos capazes de crescerem em meio mineral com uma única fonte lipídica de carbono e quantificar atividades específicas de lipases utilizando o substrato p-NPB, foi possível então obter valores promissores de atividade específica lipolítica de três fungos 8,004 U mg-1, 5,897 U mg-1, 5,077 U mg-1, para os fungos Paecilomyces formosus (primeiro isolado), Paecilomyces formosus (segundo isolado) e Aspergillus tubingensis, que são valores citados pela primeira vez para esses três fungos e se comparados a outros microrganismos da literatura são mais altos e ativos para serem utilizados em processos industriais.

Biografia do Autor

Dâmaris Hadassa Rangel Fonseca Bessa, Instituto Federal Goiano - IFG
Mestre em Agroquímica pelo Programa de Pós-graduação em Agroquímica (PPGAq) do Instituto Federal de Educação, Ciência e Tecnologia Goiano (IFG), Rio Verde (GO), Brasil.
Carlos Frederico de Souza Castro, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IFG)
Docente Permanente do Programa de Pós-graduação em Agroquímica (PPGAq) do Instituto Federal de Educação, Ciência e Tecnologia Goiano (IFG), Rio Verde (GO), Brasil.
Amanda Oliveira Souza, Colégio Estadual Alfredo Nasser
Docente temporária no Colégio Estadual Alfredo Nasser, Novo Brasil (GO), Brasil.
Antonio Carlos Pereira de Menezes Filho, Instituto Federal de Educação, Ciência e Tecnologia Goiano - IFG
Doutorando pelo Programa de Pós-Graduação em Ciências Agrárias (PPGCA) do Instituto Federal de Educação, Ciência e Tecnologia Goiano (IFG), Rio Verde (GO), Brasil.
Mariana Costa Mello Gonçalves, Instituto Federal de Educação, Ciência e Tecnologia Goiano - IFG
Gerente de pesquisa e docente permanente de Ensino Básico, Técnico e Tecnológico, do Instituto Federal de Educação, Ciência e Tecnologia Goiano (IFG), Rio Verde (GO). Doutora em Microbiologia Agropecuária - Unesp - Jaboticabal (SP), Brasil.

Referências

AHMAD, T. et al. Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renewable Energy, [s. l.], v. 139, p. 1272-1280, 2019.

ATALAH, J. et al. Thermophiles and the applications of their enzymes as new biocatalysts. Bioresource Technology, v. 280, p. 478-488, 2019.

BRAGA, Adelaide Correia. Biotransformação do óleo de rícino em aromas por Yarrowia lipolytica. 2009. 107f. Dissertação (Mestrado Integrado em Engenharia Biológica) - Universidade do Minho, Braga, Portugal, 2009.

BHARATHI, D.; RAJALAKSHMI, G. Microbial lipases: An overview of screening, production and purification. Biocatalysis and Agricultural Biotechnology, v. 22, p. 1-36, 30 set. 2019. https://doi.org/10.1016/j.bcab.2019.101368

CANET, A. et al. Exploring substrate specificities of a recombinant Rhizopus oryzae lipase in biodiesel synthesis. New Biotechnology, Barcelona, v. 39, p. 59-67, 25 out. 2017. https://doi.org/10.1016/j.nbt.2017.07.003

COLLA, L. M. et al. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation. BioMed research international, v. 2015, p. 725959, 9 jun. 2015.

COSTA, T. M. et al. Lipase Production By Aspergillus Niger Grown In Different Agro-Industrial Wastes By Solid-State Fermentation. Brazilian Journal of Chemical Engineering, v. 34, n. 2, p. 419-427, abr. 2017.

DANINO, H. et al. PPARγ regulates exocrine pancreas lipase. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, v. 1861, n. 12, p. 1921-1928, 1 dez. 2016.

FREITAS, M. F. M. Produção De Lipases Por Leveduras Isoladas Do Bagaço De Caju Utilizando Fontes Alternativas De Carbono E Nitrogênio. 2017. 104f. Tese (Doutorado em Engenharia Química), Universidade Federal do Ceará, Fortaleza, 2017.

GARCIA, A. K. Avaliação da atividade lipolítica de fungos filamentosos da costa brasileira. 2011. 56f. Dissertação (Mestrado em Biotecnologia), Universidade de São Paulo, São Paulo, 2011.

KAJIWARA, S. et al. Development of sucrose-complexed lipase to improve its transesterification activity and stability in organic solvents. Biochemical Engineering Journal, v. 121, p. 83-87, 2017.

KAPTUROWSKA, A. U. et al. Studies on the lipolytic activity of sonicated enzymes from Yarrowia lipolytica. Ultrasonics Sonochemistry, v. 19, n. 1, p. 186-191, 1 jan. 2012.

KHAN, S. et al. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution, v. 225, p. 469-480, 1 jun. 2017.

LOPES, L. V. et al. Primeiro relato da ocorrência de Paecilomyces formosus e Paecilomyces parvisporus no Brasil. R. bras. Bioci., Porto Alegre, v. 14, n. 4, p. 215-224, out./dez. 2016.

LORENZETTI, D. L. Estudos De Aplicação De Lipases Em Formulações Cosméticas. Programa de Pós-Graduação em Química, Setor de Ciências Exatas, Universidade Federal do Paraná, 2007.

MADAN, B.; MISHRA, P. Directed evolution of Bacillus licheniformis lipase for improvement of thermostability. Biochemical Engineering Journal, v. 91, p. 276-282, 15 out. 2014.

NELSON, D. L.; COX, M. M.; LEHNINGER, A. L. Lehninger principles of biochemistry. [S.l.]: W. H. Freeman and Company, 2013.

OLIVEIRA, A. et al. Utilização de Resíduos da Agroindústria para a Produção de Enzimas Lipolíticas por Fermentação Submersa. Revista Brasileira de Produtos Agroindustriais, n. 1, p. 19-26, 2013.

OLIVEIRA, A. F.; BASTOS, R. G.; DE LA TORRE, L. G. Bacillus subtilis immobilization in alginate microfluidic-based microparticles aiming to improve lipase productivity. Biochemical Engineering Journal, v. 143, p. 110-120, 15 mar. 2019.

PAPANIKOLAOU, S.; AGGELIS, G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology, v. 82, n. 1, p. 43-49, 1 mar. 2002.

PRAJAPATI, B. P. et al. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresource Technology, v. 250, p. 733-740, 1 fev. 2018.

RAOUFI, Z.; MOUSAVI, G.; SEYED, L. Biodiesel production from microalgae oil by lipase from Pseudomonas aeruginosa displayed on yeast cell surface. Biochemical Engineering Journal, v. 140, p. 1-8, 15 dez. 2018.

RIOS, N. S. et al. Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry, v. 75, p. 99-120, 2018.

SAHAY, S.; CHOUHAN, D. Study on the potential of cold-active lipases from psychrotrophic fungi for detergent formulation. Journal of Genetic Engineering and Biotechnology, v. 16, n. 2, p. 319-325, 2018.

SARDIN, S. M. et al. Dataset of differentially accumulated proteins in Mucor strains representative of four species grown on synthetic potato dextrose agar medium and a cheese mimicking medium. Data in Brief, v. 11, p. 214-220, nov. 2019.

SCHNEIDER, W. D. H. et al. Comparison of the production of enzymes to cell wall hydrolysis using different carbon sources by Penicillium echinulatum strains and its hydrolysis potential for lignocelullosic biomass. Process Biochemistry, v. 66, p. 162-170, 2018.

SILVA, T. C. Tratamento de efluente oleoso de biodiesel por extrato bruto de lipase fúngica. 2017. 106f. Dissertação (Mestrado em Engenharia Química), Universidade Federal de Pernambuco, Recife, 2017.

TURATI, D. F. M. et al. Thermotolerant lipase from Penicillium sp. section Gracilenta CBMAI 1583: Effect of carbon sources on enzyme production, biochemical properties of crude and purified enzyme and substrate specificity. Biocatalysis and Agricultural Biotechnology, v. 17, p. 15-24, 2019.

Publicado
2021-03-26
Seção
Meio Ambiente