Gestão no meio agrícola com o apoio da Inteligência Artificial: uma análise da digitalização da agricultura

Autores

DOI:

https://doi.org/10.17765/2176-9168.2022v15n3e9337

Palavras-chave:

Aprendizado de máquina, Árvore de decisão, E-agriculture, Robótica

Resumo

A aplicação da inteligência artificial aos dados dos sensores e os sistemas de gerenciamento de fazendas estão evoluindo para programas de acompanhamento em tempo real, que fornecem recomendações e insights valiosos em ação e apoio à decisão dos agricultores. Neste artigo, apresenta-se uma revisão dedicada a aplicações da inteligência artificial na produção agrícola. Os trabalhos analisados foram categorizados em: (a) redes neurais; (b) aprendizagem supervisionada; e (c) métodos dinâmicos. A categorização dos artigos demonstrou como a agricultura pode se beneficiar das tecnologias com o apoio da inteligência artificial, através do gerenciamento e tomada de decisão mais precisos, assim como otimizando a lucratividade, a produtividade e a sustentabilidade, resultando em métodos que podem ser eficazes se integrados a um sistema de informação robusto e construído em funções que podem ser cobertas por seus usuários.

Biografia do Autor

Marcelo da Costa Borba, Universidade Federal do Rio Grande do Sul - UFRGS

Doutor em Agronegócios na linha de Pesquisa de Gestão, Inovação, Tecnologia e Qualidade no Agronegócio no Programa de Pós-Graduação em Agronegócios da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brasil.

Josefa Edileide Santos Ramos, Universidade Federal do Rio Grande do Sul - UFRGS

Doutoranda em Agronegócios pela Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brasil.

Bibiana Melo Ramborger, Universidade Federal do Rio Grande do Sul - UFRGS

Doutoranda em Agronegócios pela Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brasil.

Eluardo Oliveira Marques, Universidade Federal do Rio Grande do Sul - UFRGS

Doutorando em Agronegócios pela Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brasil

João Armando Dessimon Machado, Universidade Federal do Rio Grande do Sul - UFRGS

Doutor em Economia Agroalimentar pela Universidade de Córdoba, UCO, Espanha. Professor titular junto ao Departamento de Economia e Relações Internacionais/FCE da UFRGS na graduação e pós-graduação. Porto Alegre (RS), Brasil.

Referências

ALMEIDA, O. B. et al. Blockchain in Agriculture: A Systematic Literature Review. In: 2018, Cham. Conferência Internacional sobre Tecnologias e Inovação. Cham: CITI 2018, 2018. p. 44-56. DOI: https://doi.org/10.1007/978-3-319-67283-0.

ALZOUBI, I.; ALMALIKI, S.; MIRZAEI, F. Prediction of environmental indicators in land leveling using artificial intelligence techniques. Chemical and Biological Technologies in Agriculture, Cham, v. 6, n. 1, p. 4, 2019. DOI: https://doi.org/10.1186/s40538-019-0142-7.

AMPATZIDIS, Y.; BELLIS, L.; LUVISI, A. iPathology: Robotic applications and management of plants and plant diseases. Sustainability (Switzerland), v. 9, n. 6, p. 1-14, 2017. DOI: https://doi.org/10.3390/su9061010.

ANDRITOIU, D. et al. Agriculture autonomous monitoring and decisional mechatronic system. Proceedings of the 2018 19th International Carpathian Control Conference, ICCC 2018, Szilvásvárad, p. 241-246, 2018. DOI: https://doi.org/10.1109/CarpathianCC.2018.8399635.

ARISTODEMOU, L.; TIETZE, F. The state-of-the-art on Intellectual Property Analytics (IPA): a literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Patent Information, v. 55, n. 2, p. 37-51, 2018. DOI: https://doi.org/10.1016/j.wpi.2018.07.002.

BALAN, K. C. S. Robotic-Based Agriculture for Rural Renaissance: Drones and Biosensors. Comprehensive Analytical Chemistry, v. 74, p. 363-375, 2016. DOI: https://doi.org/10.1016/bs.coac.2016.04.017.

BAYINDIR, L. A review of swarm robotics tasks. Neurocomputing, Oxford, v. 172, p. 292-321, 2016. DOI: https://doi.org/10.1016/j.neucom.2015.05.116.

BENTHAM, M. J. Farm Smart 2000: A multi-agent decision support system for crop production. In: 1998, Hong Kong. 7th International Conference on Computers in Agriculture. Hong Kong: 7, 1998. p. 469-479.

BITTAR, R. D.; ALVES, S. M. F.; MELO, F. R. Estimation of physical and chemical soil properties by artificial neural networks. Revista Caatinga, Mossoró, v. 31, n. 3, p. 704-712, 2018.

BONIECKI, P. et al. Detection of the granary weevil based on X-ray images of damaged wheat kernels. Journal of Stored Products Research, v. 56, p. 38-42, 2014. DOI: https://doi.org/https://doi.org/10.1016/j.jspr.2013.11.001.

BRONSON, K.; KNEZEVIC, I. Big Data in food and agriculture. Big Data & Society, v. 3, n. 1, p. 2053951716648174, 2016.

CHIA, M. Y. et al. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques - A Review. Agronomy, New York, v. 10, n. 1, p. 101, 2020. DOI: https://doi.org/10.3390/agronomy10010101.

CHUKWU, N. C. E. Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research, v. 9, n. 4, p. 4377-4383, 2019.

CORTÉS, U. et al. Artificial intelligence and Environmental Decision Support Systems. Applied Intelligence, Amsterdam, v. 13, n. 1, p. 77-91, 2000. DOI: https://doi.org/10.1023/A:1008331413864.

DEEPA, N.; GANESAN, K. Hybrid rough fuzzy soft classifier based multi-class classification model for agriculture crop selection. Soft Computing, v. 23, n. 21, p. 10793-10809, 2019. DOI: https://doi.org/10.1007/s00500-018-3633-8.

DONGRE, V. B.; GANDHI, R. S. Applications of artificial neural networks for enhanced livestock productivity: A review. Indian Journal of Animal Sciences, v. 86, n. 11, p. 1232-1237, 2016. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84998865619&partnerID=40&md5=363aef2063a6ea7d2f06f968acc40367.

DORNELLES, E. F. et al. Artificial intelligence in seeding density optimization and yield simulation for oat. Revista Brasileira de Engenharia Agrícola e Ambiental, Campo Grande, v. 22, n. 3, p. 183-188, 2018. DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n3p183-188.

EVANS, K. J.; TERHORST, A.; KANG, B. H. From Data to Decisions: Helping Crop Producers Build Their Actionable Knowledge. Critical Reviews in Plant Sciences, London, v. 36, n. 2, p. 71-88, 2017. DOI: https://doi.org/10.1080/07352689.2017.1336047.

FENG, Z. Constructing rural e-commerce logistics model based on ant colony algorithm and artificial intelligence method. Soft Computing, v. 8, 2019. DOI: https://doi.org/10.1007/s00500-019-04046-8.

GENG, L.; DONG, T. An agricultural monitoring system based on wireless sensor and depth learning algorithm. International Journal of Online Engineering, v. 13, n. 12, p. 127-137, 2017. DOI: https://doi.org/10.3991/ijoe.v13i12.7885.

GÖTZ, S. et al. Simulation of agricultural logistic processes with k-nearest neighbors algorithm. Agricultural Engineering International: CIGR Journal, v. 2015, p. 241-245, 2015.

GUBBI, J. et al. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, Amsterdam, v. 29, n. 7, p. 1645-1660, 2013. DOI: https://doi.org/10.1016/j.future.2013.01.010.

HASHIMOTO, Y. et al. Intelligent systems for agriculture in Japan. IEEE Control Systems Magazine, Washington, v. 21, n. 5, p. 71-85, 2001. DOI: https://doi.org/10.1109/37.954520.

HUTSON, M. AI Glossary: Artificial intelligence, in so many words. Science, New York, v. 357, n. 6346, p. 19-19, 2017. DOI: https://doi.org/10.1126/science.357.6346.19.

KAMBLE, S. S.; GUNASEKARAN, A.; GAWANKAR, S. A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, Amsterdam, v. 219, p. 179-194, 2020. DOI: https://doi.org/10.1016/j.ijpe.2019.05.022.

KANG, M.; WANG, F. Y. From parallel plants to smart plants: Intelligent control and management for plant growth. IEEE/CAA Journal of Automatica Sinica, v. 4, n. 2, p. 161-166, 2017. DOI: https://doi.org/10.1109/JAS.2017.7510487.

KAPLAN, A.; HAENLEIN, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, Amsterdam, v. 62, n. 1, p. 15-25, 2019. DOI: https://doi.org/10.1016/j.bushor.2018.08.004.

KARGAR, A. H. B.; SHIRZADIFAR, A. M. Automatic weed detection system and smart herbicide sprayer robot for corn fields. In: 2013, Tehran. 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM). Tehran: IEEE, 2013. p. 468-473. DOI: https://doi.org/10.1109/ICRoM.2013.6510152.

KOUADIO, L. et al. Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Computers and Electronics in Agriculture, Amsterdam, v. 155, n. April, p. 324-338, 2018. DOI: https://doi.org/10.1016/j.compag.2018.10.014.

KUMAR, A. V. S. P.; BHRAMARAMBA, R. Adapting mining into agriculture sector with machine learning techniques. International Journal of Control and Automation, Seul, v. 10, n. 7, p. 13-22, 2017. DOI: https://doi.org/10.14257/ijca.2017.10.7.02.

LATORRE-BIEL, J. I. et al. Decision support in the rioja wine production sector. International Journal of Food Engineering, Berlin, v. 9, n. 3, p. 267-278, 2013. DOI: https://doi.org/10.1515/ijfe-2013-0032.

LEZOCHE, M. et al. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry, Radarweg 29, 1043 Nx Amsterdam, Netherlands, v. 117, 2020. DOI: https://doi.org/10.1016/j.compind.2020.103187.

LI, D.; YANG, H. State-of-the-art Review for Internet of Things in Agriculture. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, Pequim, v. 49, n. 1, p. 1-20, 2018. DOI: https://doi.org/10.6041/j.issn.1000-1298.2018.01.001.

LIAKOS, K. G. et al. Machine Learning in Agriculture: A Review. Sensors, v. 18, n. Ml, p. 1-29, 2018. DOI: https://doi.org/10.3390/s18082674.

LIBERATI, A. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS medicine, New York, v. 6, n. 7, 2009.

MAHMOUD, M.; M RAFEA, M.; A RAFEA, A. Using expert systems technology to increase agriculture production and water conservation. 3rd International Conference on Digital Information Management, ICDIM 2008, p. 1-7, 2008. DOI: https://doi.org/10.1109/ICDIM.2008.4746802.

MEHDIZADEH, S. Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new approach for lagged ETo data-based modeling. Journal of Hydrology, Amsterdam, v. 559, p. 794-812, 2018. DOI: https://doi.org/10.1016/j.jhydrol.2018.02.060.

MORALES, I. R. et al. Early warning in egg production curves from commercial hens: A SVM approach. Computers and Electronics in Agriculture, v. 121, p. 169-179, 2016. DOI: https://doi.org/10.1016/j.compag.2015.12.009.

NAVULUR, S.; SASTRY, A. S. C. S.; PRASAD, M. N. G. Agricultural management through wireless sensors and internet of things. International Journal of Electrical and Computer Engineering, Jacarta, v. 7, n. 6, p. 3492-3499, 2017. DOI: https://doi.org/10.11591/ijece.v7i6.pp3492-3499.

OGUNDE, A. O.; OLANBO, A. R. A web-based decision support system for evaluating soil suitability for cassava cultivation. Advances in Science, Technology and Engineering Systems, v. 2, n. 1, p. 42-50, 2017. DOI: https://doi.org/10.25046/aj020105.

PATRÍCIO, D. I.; RIEDER, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, ‎Amsterdam‎, v. 153, n. April, p. 69-81, 2018. DOI: https://doi.org/10.1016/j.compag.2018.08.001.

PERINI, A.; SUSI, A. Developing a decision support system for integrated production in agriculture. Environmental Modelling and Software, v. 19, n. 9, p. 821-829, 2004. DOI: https://doi.org/10.1016/j.envsoft.2003.03.001.

PIVOTO, D. et al. Scientific development of smart farming technologies and their application in Brazil. Information Processing in Agriculture, v. 5, n. 1, p. 21-32, 2018. DOI: https://doi.org/https://doi.org/10.1016/j.inpa.2017.12.002.

RATHOD, S. et al. Modeling and forecasting of oilseed production of India through artificial intelligence techniques. The Indian Journal of Agricultural Sciences, Nova Delhi, v. 88, n. 1, p. 22-27, 2018.

ROOH, U. A.; LI, A.; ALI, M. M. Fuzzy, neural network and expert systems methodologies and applications - A review. Journal of Mobile Multimedia, v. 11, n. 1-2, p. 157-176, 2015. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926505137&partnerID=40&md5=aa4383f83e91ffdcd18ae2b3e5ac4e79.

ROOPAEI, M.; RAD, P.; CHOO, K.-K. R. Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging. IEEE Cloud Computing, New York, v. 4, n. 1, p. 10-15, 2017. DOI: https://doi.org/10.1109/mcc.2017.5.

ROSE, D. C.; CHILVERS, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Frontiers in Sustainable Food Systems, v. 2, n. December, p. 1-7, 2018. DOI: https://doi.org/10.3389/fsufs.2018.00087.

SABRI, N. et al. Smart prolong fuzzy wireless sensor-actor network for agricultural application. Journal of Information Science and Engineering, Taipé, v. 28, n. 2, p. 295-316, 2012.

SEEBACHER, S.; SCHÜRITZ, R. Blockchain Technology as an Enabler of Service Systems: A Structured Literature Review. In: 2017, Geneva. International Conference on Exploring Services Science. Geneva: [s. n.], 2017. p. 12-23. DOI: https://doi.org/10.1007/978-3-319-56925-3_2.

SIMONE, M. C.; RIVERA, Z. B.; GUIDA, D. Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines, v. 6, n. 2, 2018. DOI: https://doi.org/10.3390/machines6020018.

STASTNY, J.; KONECNY, V.; TRENZ, O. Agricultural data prediction by means of neural network. Agricultural Economics (Zemědělská ekonomika), Wiley, v. 57, n. 7, p. 356-361, 2011. DOI: https://doi.org/10.17221/108/2011-AGRICECON.

TAN, Y.; ZHENG, Z. Research Advance in Swarm Robotics. Defence Technology, Pequim, v. 9, n. 1, p. 18-39, 2013. DOI: https://doi.org/10.1016/j.dt.2013.03.001.

TOPUZ, A. Predicting moisture content of agricultural products using artificial neural networks. Advances in Engineering Software, London, v. 41, n. 3, p. 464-470, 2010. DOI: https://doi.org/10.1016/j.advengsoft.2009.10.003.

UNTARU, M.; ROTARESCU, V.; DORNEANU, L. Artificial neural networks for sustainable agribusiness: A case study of five energetic crops. Agrociencia, Cidade do México, v. 46, n. 5, p. 507-518, 2012. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869426625&partnerID=40&md5=af10af49e1e3bec1b9356a2f8e717543.

VENKATESH, E. T.; THANGARAJ, P. Self-organizing map and multi-layer perceptron neural network based data mining to envisage agriculture cultivation. Journal of Computer Science, Washington, v. 4, n. 6, p. 494-502, 2008. DOI: https://doi.org/10.3844/jcssp.2008.494.502.

VIJAYALAKSHMI, J.; PANDIMEENA, K. Agriculture talkbot using AI. International Journal of Recent Technology and Engineering, v. 8, n. 2 Special Issue 5, p. 186-190, 2019. DOI: https://doi.org/10.35940/ijrte.B1037.0782S519.

VILLANUEVA, M. B.; SALENGA, M. L. M. Bitter melon crop yield prediction using Machine Learning Algorithm. International Journal of Advanced Computer Science and Applications, Saga, v. 9, n. 3, p. 1-6, 2018. DOI: https://doi.org/10.14569/IJACSA.2018.090301.

VINCENT, D. R. et al. Sensors driven ai-based agriculture recommendation model for assessing land suitability. Sensors (Switzerland), v. 19, n. 17, 2019. DOI: https://doi.org/10.3390/s19173667.

WOLFERT, S. et al. Big Data in Smart Farming - A review. Agricultural Systems, London, v. 153, p. 69-80, 2017. DOI: https://doi.org/https://doi.org/10.1016/j.agsy.2017.01.023.

XIN, J. et al. Development of vegetable intelligent farming device based on mobile APP. Cluster Computing, v. 22, p. 8847-8857, 2019. DOI: https://doi.org/10.1007/s10586-018-1979-4.

XUE-LEI, W.; GONG-HU, L. Study on decision support system of agricultural sustainable Development of Jianli county in Jianghan plain. Wuhan University Journal of Natural Sciences, Pelotas, v. 5, n. 3, p. 334-338, 2000. DOI: https://doi.org/10.1007/bf02830149.

Downloads

Publicado

2022-07-01

Como Citar

Borba, M. da C., Ramos, J. E. S. ., Ramborger, B. M., Marques, E. O., & Machado, J. A. D. . (2022). Gestão no meio agrícola com o apoio da Inteligência Artificial: uma análise da digitalização da agricultura. Revista Em Agronegócio E Meio Ambiente, 15(3), 1–22. https://doi.org/10.17765/2176-9168.2022v15n3e9337

Edição

Seção

Agronegócio