Pumpkin processing by-products: Incorporation of defatted seed flour and ethanolic extract of the peel in gelatin-based biodegradable film

Autores/as

DOI:

https://doi.org/10.17765/2176-9168.2025v18e13847%20

Palabras clave:

Co-products, Packaging, Phenolic compounds, Polymers, Pumpkin

Resumen

The present study aimed to use pumpkin by-products (seeds and peels) for the production of gelatin-based biodegradable film (FBs). For this purpose, the incorporation of defatted pumpkin seed flour (DPSF) and ethanolic extract of pumpkin peels (EEPP) into FBs, produced by casting, was evaluated. The FBs were characterized in terms of thickness, visual evaluation, humidity, water solubility, UV/VIS barrier, color parameters, microscopy, Fourier transform infrared spectroscopy (FTIR), biodegradability in soil and the content of phenolic compounds and flavonoids. In general, all the formulations showed film-forming capacity; however, the greater incorporation of DPSF (formulations F3 and F6) provided heterogeneous films and the different formulations did not influence the thickness and humidity of the FBs. Due to the presence of hydrophilic groups in flour, the solubility of FBs was changed with their incorporation into FBs. Regarding color parameters, the incorporation of DPSF and EEPP influenced the values of a*, b* and C*, presenting light transmission and opacity of 0.61 to 5.83 (A/mm), respectively. The incorporation of pumpkin by-products contributed to the improvement of the UV/VIS barrier of FBs. The FBs presented in the FTIR analysis, bands characteristic of gelatin and lecithin-based films. The addition of DPSF increased the concentration of total phenolic compounds in the films. The samples incorporated with DPSF and EEPP showed less residue in the biodegradability tests from the 11th day onwards, inferring that their incorporation speeds up the biodegradation process.

Biografía del autor/a

Camila da Silva, Universidade Estadual de Maringá

Doutora em Engenharia Química pela Universidade Estadual de Maringá (UEM). Professora do Programa de Pós-graduação em Engenharia Química (PEQ) da Universidade Estadual de Maringá (UEM), PR, Brasil.

Jorcilene dos Santos Silva, Universidade Paranaense

Doutoranda em Biotecnologia Aplicada à Agricultura pela Universidade Paranaense (UNIPAR), Umuarama (PR), Brasil.

Djéssica Tatiane Raspe, Universidade Estadual de Maringá

Doutora em Ciência de Alimentos pela Universidade Estadual de Maringá (UEM), Maringá (PR), Brasil.

Natália Stevanato, Universidade Estadual de Maringá

Doutora em Engenharia Química pela Universidade Estadual de Maringá (UEM), Maringá (PR), Brasil.

Vitor Augusto dos Santos Garcia, Universidade Estadual Paulista "Júlio de Mesquita Filho"

Doutor em Engenharia de Alimentos pela Universidade de São Paulo (USP). Professor na Faculdade de Ciências Agronômicas (FCA) da Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu (SP), Brasil.

Citas

AGUIRRE, A.; MENDEZ, X.; BORNEO, R. Characterization and storage study of chickpea flour films with UV-barrier and Cu-remove properties. App. Food Res., 100011, 2021. DOI: https://doi.org/10.1016/j.afres.2021.100011.

ALQAHTANI, N.; ALNEMR, T.; ALI, S. Development of low-cost biodegradable films from corn starch and date palm pits (Phoenix dactylifera). Food Biosci., v. 42, 101199, 2021. DOI: https://doi.org/10.1016/j.fbio.2021.101199.

ASTM D5338-15. Método de teste padrão para determinar a biodegradação aeróbia de materiais plásticos sob condições de compostagem controladas, incorporando temperaturas termofílicas, ASTM International, West Conshohocken, PA, 2021.

BOEIRA, C. P.; FLORES, D. C. B.; ALVES, J. S.; MOURA, M. R.; MELO, P. T. S.; ROLIM, C. M. B.; NOGUEIRA-LIBRELOTTO, D. R.; ROSA, C. S. Effect of corn stigma extract on physical and antioxidant properties of biodegradable and edible gelatin and corn starch films. Int. J. Biol. Macromol., Guildford, v. 208, p. 698-706, 2022. DOI: https://doi.org/10.1016/j.ijbiomac.2022.03.164.

BORGES, J. G.; SILVA, A. G.; CERVI-BITENCOURT, C. M.; VANIN, F. M.; CARVALHO, R. A. Lecithin, gelatin and hydrolzed collagen orally didintegrating films: functional properties. Int. J. Biol. Macromol., Guildford, v. 86, p. 907-916, 2016. DOI: https://doi.org/10.1016/j.ijbiomac.2016.01.089.

CHEN, L.; QIANG, T.; CHEN, X.; REN, W.; ZHANG, H. J. Fabrication and evaluation of biodegradable multi-cross-linked mulch film based on waste gelatin. Chem. Eng. J., Lausanne, v. 419, 129639, 2021. DOI: https://doi.org/10.1016/j.cej.2021.129639.

CHEN, L.; QIANG, T.; CHEN, X.; REN, W.; ZHANG, H. J. Gelatin from leather waste to tough biodegradable packaging film: One valuable recycling solution for waste gelatin from leather industry. Waste Manag., Elmsford, v. 145, p. 10-19, 2022. DOI: https://doi.org/10.1016/j.wasman.2022.04.023.

CHEN, L.; GAO, J.; ZHANG, X.; LI, J.; ZHANG, Y.; QIANG, T. Octadecylamine modified gelatin-based biodegradable packaging film with good water repellency and improved moisture service reliability. Int. J. Biol. Macromol., Guildford, v. 279, 135218, 2024. DOI: https://doi.org/10.1016/j.ijbiomac.2024.135218.

CRIZEL, T. M.; RIOS, A. O.; ALVES, V. D.; BANDARRA, N.; MOLDÃO-MARTINS, M.; FLÔRES, S. H. Biodegradable films based on gelatin and papaya peqel microparticles with antioxidant properties. Food Bioprocess. Tech., v. 11, p. 536-550, 2017. DOI: https://doi.org/10.1007/s11947-017-2030-0.

DAUDT, R. M.; AVENA-BUSTILLOS, R. J.; WILLIAMS, T.; WOOD, D. F.; K?LKAMP-GUERREIRO, I. C.; MARCZAK, L. D. F.; MCHUGH, T. H. Comparative study on properties of edible films based on pinhão (Araucaria angustifolia) starch and flour. Food Hydrocoll., Oxford, v. 60, p. 279-287, 2016. DOI: https://doi.org/10.1016/j.foodhyd.2016.03.040.

DESHMUKH, A. R.; ALOUI, H.; KHOMLAEM, C.; NEGI, A.; HUN, J-H.; KIM, H-S.; KIM, B. S. Biodegradable films based on chitosan and defatted Chlorella biomass: Functional and phyical characterization. Food Chem., London, v. 337, 127777, 2021. DOI: https://doi.org/10.1016/j.foodchem.2020.127777.

DIAS, A. B.; M?LLER, C. M. O.; LAROTONDA, F. D. S.; LAURINDO, J. B. Biodegradable films based on rice starch and rice flour. J. Cereal Sci., London, v. 51, p. 213-219, 2010. DOI: https://doi.org/10.1016/j.jcs.2009.11.014xr5.

EVODE, N.; QAMAR, S. A.; BILAL, M.; BARCELÓ, D.; IQBAL, H. M. N. Plastic waste and its management strategies for environmental Sustainability. Case Stud. Chem. Environ. Eng., New York, v. 4, 100142, 2021. DOI: https://doi.org/10.1016/j.cscee.2021.100142.

FRANCISCO, A. P.; SGANZERLA, G. W.; CASTRO, L. E. N.; BARROSO, T. L. C. T.; SILVA, A. P. G.; ROSA, C. G.; NUNES, M. R.; FORSTER-CARNEIRO, T.; ROSTAGNO, M. A. Pressurized liquid extraction of bioactive compounds from grape peel and application in pH-sensing carboxymethyl cellulose films: A promising material to monitor the freshness of pork and milk. Food Res. Int., Barking, v. 179, 114017, 2024. DOI: https://doi.org/10.1016/j.foodres.2024.114017.

FREITAS, T. S. M.; RODRIGUES, G. M.; FAKHOURI, F. M.; SILVA, C.; CARDOSO, C. A. L.; VELASCO, J. I.; FILGUEIRAS, C. T.; GARCIA, V. A. S. Application of the Box-Behnken experimental design for the extractios of phenolic compounds from araçá-roxo (Psidium myrtoides). J. Food Process. Preserv., Westport, v. 45, e-15260, 2021. DOI: https://doi.org/10.1111/jfpp.15260.

GONTARD, N.; GUILBERT, S.; CUQ, J-L. Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties using Response Surface Methodology. J. Food Sci., Champaign, v. 57, p. 190-195, 1992. DOI: https://doi.org/10.1111/j.1365-2621.1992.tb05453.x.

GUTIÉRREZ, T. J.; GONZÁLEZ, G. Effects of exposure to pulsed light on surface and structural properties of edible films made from cassava and taro starch. Food Bioprocess. Tech., v. 9, p. 1812–1824, 2016. DOI: https://doi.org/10.1007/s11947-016-1765-3.

GUTIÉRREZ, T. J. Are modified pumpkin flour/plum flour nanocomposite films biodegradable and compostable?. Food Hydrocoll., Oxford, v. 83, p. 397- 410, 2018. DOI: https://doi.org/10.1016/j.foodhyd.2018.05.035.

HUSSAIN, A.; KAUSAR, T.; DIN, A.; MURTAZA, M. A.; JAMIL, M. A.; NOREEN, S.; REHMAN, H. U.; SHABBIR, H.; RAMZAM, M. A. Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). J. Food Process. Preserv., Westport, v. 45, e15542, 2021. DOI: https://doi.org/10.1111/jfpp.15542.

KUMAR, Y.; SANTHOSH, R.; HOQUE, M.; NATH, D.; THAKUR, R.; MADHUBABU, D.; SURYAVANSHI, V.R.; SINGHI, H.; AHMED, J.; SARKAR, P. Development and characterization of defatted pumpkin seed meal and halloysite nanoclay composite films for food packaging. Packaging Technology and Science, v.36, p.715-727, 2023. DOI: https://doi.org/10.1002/pts.2751

LALNUNTHARI, C.; DEVI, L. M.; AMAMI, E.; BADWAIK, L. S. Valorization of pumpkin seeds and peels in to biodegradable packaging films. Food Bioprod. Process., v. 118, p. 58-66, 2019. DOI: https://doi.org/10.1016/j.fbp.2019.08.015.

LI, J.; JIANG, S.; WEI, Y.; LI, X.; SHI, S. Q.; ZHANG, W.; LI, J. Facile fabrication of tough, strong, and biodegradable soy protein-based composite films with excellent UV-blocking performance. Compos. B, v. 211, 108645, 2021. DOI: https://doi.org/10.1016/j.compositesb.2021.108645.

MASSA, T. B.; STEVANATO, N.; CARDOZO-FILHO, L.; SILVA. C. Pumpkin (Cucurbita máxima) by-products: Obtaining seed oil enriched with active compounds from the peel by ultrasonic-assisted extraction. J. Food Process Eng., Westport, v. 42, e13125, 2019. DOI: https://doi.org/10.1111/jfpe.13125.

MUELLER. R-J. Biological degradation of synthetic polyesters-Enzymes as potential catalysts for polyester recycling. Process Biochem., London, v. 41, p. 2124-2128, 2006. DOI: https://doi.org/10.1016/j.procbio.2006.05.018.

NASCIMENTO, T. A.; CALADO, V.; CARVALHO, C. W. P. Development and characterization of flexible film based on starch and passion fruitm esocarp flour with nanoparticles. Food Res. Int., Barking, v. 49, p. 588-595, 2012. DOI: https://doi.org/10.1016/j.foodres.2012.07.051.

NOURADDINI, M.; ESMAIILI, M.; MOHTARAMI. Development and characterization of edible films based on egg plant flour and com starch. Int. J. Biol. Macromol., Guildford, v. 120, p. 1639-1645, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.126.

ORSUWAN, A.; SOTHORNVIT, R. Development and characterization of banana flour film incorporated with montmorillonite and banana starch nanoparticles. Carbohydr. Polym., Barking, v. 174, p. 235-242, 2017. DOI: https://doi.org/10.1016/j.carbpol.2017.06.085.

PELISSARI, F. M.; ANDRADE-MAHECHA, M. M.; SOBRAL, P. J. A.; MENEGALLI, F. C. Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll., Oxford, v. 30, p. 681–690, 2013. DOI: https://doi.org/10.1016/j.foodhyd.2012.08.007.

RODRIGUES, G. M.; FILGUEIRAS, C. T.; GARCIA, V. A. S.; CARVALHO, R. A.; VELASCO, J. I.; FAKHOURI, F. M. Antimicrobial activity and GC-MS profile of cobaiba oil for incorporation into Xanthosoma mafaffa starch-based films. Polym., v. 12, 2883, 2020. DOI: https://doi.org/10.3390/polym12122883.

RODRIGUEZ-AMAYA, D. B.; KIMURA, M. Harvest Plushandbook for carotenoid analysis. Harvest Plus Technical monograph series 2, Washington, DC e Cali: International Food Policy Research Institute (IFPRI) e International Center for Tropical Agriculture (CIAT), 2004.

SILVA, M. L. T.; BRINQUES, G. B.; GURAK, P. D. Desenvolvimento e caracterização de bioplásticos de amido de milho contendo farinha de subproduto de broto. Braz. J. Food Technol., Campinas, v. 23, e2018326, 2020. DOI: https://doi.org/10.1590/1981-6723.32618.

SINGLETON, V. L.; ORTHOFER, R.; LAMUELA-RAVENTÓS, R. Analysisof total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., New York, v. 299, p. 152-178, 1998. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1.

SOLANO, A. C. V.; GANTE, C. R. (2014). Development of biodegradable films based on blue corn flour with potential applications in food packaging. Effects of plasticizers on mechanical, thermal, and microstructural properties of flour films. J. Cereal Sci., London, v. 60, p. 60-66, 2014. DOI: https://doi.org/10.1016/j.jcs.2014.01.015.

SOOD, A.; SAINI, C. S. Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocoll., Oxford, v. 123, 107135, 2022. DOI: https://doi.org/10.1016/j.foodhyd.2021.107135.

SOO, P. Y.; SARBON, N. M. Preparation and characterization of edible chicken skin gelatin film incorporated with rice flour. Food Packag. Shelf Life, v. 15, p. 1-8, 2018. DOI: https://doi.org/10.1016/j.fpsl.2017.12.009.

STOLL, L.; SILVA, A. M.; IAHNKE, A. O. S.; COSTA, T. M. H.; FLORES, S. H.; RIOS, A. O. Active biodegradable film with encapsulated anthocyanins: Effect on the quality atributes of extra-virgin olive oil during storage. J. Food Process. Preserv., Westport, v. 41, e13218, 2016. DOI: https://doi.org/https://doi.org/10.1111/jfpp.13218.

TAPIA-BLÁCIDO, D. R.; SOBRAL, P. J. A.; MENEGALLI, F. C. Effect of drying conditions and plasticizer typeon some physical and mechanical properties of amaranth flour films. LWT, v. 50, p. 392-400, 2013. DOI: https://doi.org/10.1016/j.lwt.2012.09.008.

WANI, A. A.; SOGI, D. S.; GROVER, L.; SAXENA, D. C. EFFECT of temperature, alkali concentration, mixing time and meal/solvent ratioon the extraction of water melon seed proteins-a response surface approach. Biosyst. Eng., London, v. 94, p. 67-73, 2006. DOI: https://doi.org/10.1016/j.biosystemseng.2006.02.004.

ZHANG, H.; SABLANI, S. Biodegradable packaging reinforced with plant-based food waste and by-products. Curr. Opin. Food Sci., v. 41, p. 61-68, 2021. DOI: https://doi.org/10.1016/j.cofs.2021.05.003.

ZHANG, Q.; ZHANG, J.; PING, Q.; SUI, Z.; LI, H. Performance comparison of glycerol-plasticized type A and type B gelatin films and their suitability for food packaging. Polym., v. 343, 129389, 2026. DOI: https://doi.org/10.1016/j.polymer.2025.129389.

ZHONG, Y.; GODWIN, P.; JIN, Y.; XIAO, H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Ind. Eng. Polym. Res., v. 3, p. 27-35, 2020. DOI: https://doi.org/10.1016/j.aiepr.2019.11.002.

Descargas

Publicado

2025-12-30

Cómo citar

Silva, C. da, Silva, J. dos S., Raspe, D. T., Stevanato, N., & Garcia, V. A. dos S. (2025). Pumpkin processing by-products: Incorporation of defatted seed flour and ethanolic extract of the peel in gelatin-based biodegradable film. Revista Em Agronegócio E Meio Ambiente, 18, e13847 . https://doi.org/10.17765/2176-9168.2025v18e13847

Número

Sección

MEIO AMBIENTE e TECNOLOGIA LIMPAS

Artículos más leídos del mismo autor/a