Limitations of bamboo and sugarcane pellets in domestic and industrial systems

Autores

DOI:

https://doi.org/10.17765/2176-9168.2024v17n.Especial.e11271

Palavras-chave:

Agropellets; Cinzas; Cloro; Escórias; Incrustações.

Resumo

A necessidade de substituição de combustíveis fósseis por fontes de baixo carbono intensificou o comércio intercontinental de biocombustíveis pellets. No entanto, algumas biomassas vegetais têm características energéticas que restringem determinadas aplicações dos agropellets. O objetivo deste trabalho é apresentar essas limitações dos pellets de bambu e bagaço de cana, comparativamente aos parâmetros exigidos pelo padrão da Organização Internacional de Padronização. O estudo das propriedades energéticas de três tipos de pellets (pinus, bagaço-de-cana e bambu) foi realizado a partir da análise elementar, análise imediata, poder calorífico superior, durabilidade mecânica, densidade energética, densidade a granel e cinzas residuais da combustão. Os resultados revelaram aspectos negativos dos agropellets comparativamente aos wood pellets: maior teor de cinzas, menor quantidade de energia liberada, baixa durabilidade mecânica e cinzas residuais com mais sílica, que podem causar incrustações e desgastes nos queimadores. Os pellets de bagaço de cana apresentaram o maior teor de cinzas (4,78%), o menor poder calorífico superior (18,52 MJ kg-1) e o maior conteúdo de SiO2 nas cinzas residuais da combustão (60,23%). Os teores de cloro mais elevados nos pellets de bambu e bagaço de cana indicam maior possibilidade de formação de escórias e incrustações nos equipamentos de queima. 

Biografia do Autor

Dorival Pinheiro Garcia, Faculdade de Ciências Sociais e Agrárias de Itapeva / FAIT

Doutor em Engenharia Mecânica pela Universidade Estadual Paulista - Júlio de Mesquita Filho (UNESP). Docente na Faculdade de Ciências Sociais e Agrárias de Itapeva (FAIT), Itapeva (SP), Brasil.

José Cláudio Caraschi, Universidade Estadual Paulista Júlio de Mesquita Filho / UNESP

Doutor em Química pela Universidade de São Paulo (USP). Professor Associado da Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), SP, Brasil.

Thiago de Paula Protásio, Universidade Federal Rural da Amazônia / UFRA

Doutor em Ciência e Tecnologia da Madeira pela Universidade Federal de Lavras (UFLA). Docente no Programa de Pós-Graduação em Ciências Florestais da Universidade Federal Rural da Amazônia (UFRA) e no Programa de Pós-Graduação em Ciência e Tecnologia da Madeira da Universidade Federal de Lavras (UFLA).

Mário Vanoli Scatolino, Universidade do Estado do Amapá / UEAP

Doutor em Engenharia de Biomateriais pela Universidade Federal de Lavras (UFLA). Docente efetivo da Universidade do Estado do Amapá (UEAP), Macapá (AP), Brasil.

Fábio Henrique Antunes Vieira, Centro Estadual de Educação Tecnológica Paula Souza / CEETEPS

Doutor em Engenharia Mecânica pela Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) Brasil. 

Ronaldo da Silva Viana, Universidade Estadual Paulista Júlio de Mesquita Filho / UNESP - Campus Dracena

Doutor em Agronomia pela Universidade Estadual Paulista - Júlio de Mesquita Filho (UNESP). Docente da UNESP, Dracena (SP), Brasil.

Referências

BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS. ABNT NBR 14929: wood: determination of moisture content: oven drying method. Rio de Janeiro: ABNT, 2017.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D1762-84: standard test method for chemical analysis of wood charcoal. Philadelphia: ASTM, 2001.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E775/87: standard test methods for total sulfur in the analysis sample of refuse derived fuel. Philadelphia: ASTM, 2008a.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E777/08: standard test method for carbon and hydrogen in the analysis sample of refuse. Philadelphia: ASTM 2008b.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E778/08: standard test methods for nitrogen in the analysis sample of coal and coke. Philadelphia: ASTM, 2008c.

AZÓCAR, L. ; HERMOSILLA, N.; GAY, A. Brown pellet production using wheat straw from southern cities in Chile. Fuel, v. 237, n. 9, p. 823–832, 2019. https://doi.org/10.1016/j.fuel.2018.09.039.

BONASSA, G.; SCHNEIDER, L. T.; CANEVER, V. B. Scenarios and prospects of solid biofuel use in Brazil. Renewable and Sustainable Energy Reviews, v. 82, n. 8, p. 2365–2378, 2018. https://doi.org/10.1016/j.rser.2017.08.075.

CHRISTOFOROU, E. A.; FOKAIDES, P. A. Thermochemical properties of pellets derived from agro-residues and the wood industry. Waste and Biomass Valorization, v. 8, n. 4, p. 1325–1330, 2017. https://doi.org/10.1007/s12649-016-9677-z.

EUROPEAN COMMITTEE FOR STANDARDIZATION. CEN TS 14918: methods for the determination of calorific value. Brussels: CEN, 2005a.

EUROPEAN COMMITTEE FOR STANDARDIZATION. CEN TS 15103: methods for determination of bulk density. Brussels: CEN, 2005b.

EUROPEAN COMMITTEE FOR STANDARDIZATION. CEN TS 15210: methods for the determination of mechanical durability. Brussels: CEN, 2005c.

GARCIA-MARAVER, A.; SANCHEZ, J.M.; CARPIO, M.; JIMENEZ, J.A.P. Critical review of predictive coefficients for biomass ash deposition tendency. Journal of the Energy Institute, v. 90, n. 2, p. 214–228, 2017. https://doi.org/10.1016/j.joei.2016.02.002.

GARCIA, D. P. ; CARASCHI, J.C.; VENTORIM, G.; PRATES, G.A.; PROTÁSIO, T.P. Quality of Brazilian biomass pellets for residential heating: standards of ISO 17225. Brazilian Journal of Wood Science, v. 9, n. 1, p. 45–53, 2018. https://doi.org/10.12953/2177-6830/rcm.v9n1p45-53.

GARCIA, D. P. ; CARASCHI, J.C.; VENTORIM, G.; VIEIRA, F.H.A.; PROTÁSIO, T.P. Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA). Renewable Energy, v. 139, n. 8, p. 796-805, 2019. https://doi.org/10.1016/j.renene.2019.02.103.

GARCIA, D. P.; CARASCHI, J. C.; VENTORIM, G. Emissions of greenhouse effect gases from wood pellets burning. Floresta, v. 47, n. 3, p. 297–306, 2017. https://doi.org/10.5380/rf.v47i3.50952.

GARCÍA, R.; GIL, M.V.; RUBIERA, F.; PEVIDA, C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel, v. 251, p. 739–753, 2019. https://doi.org/10.1016/j.fuel.2019.03.141.

IFTIKHAR, M.; ASGHAR, A.; RAMZAN, N.; SAJJADI, B.; CHEN, W.Y. Biomass densification: Effect of cow dung on the physicochemical properties of wheat straw and rice husk based biomass pellets. Biomass and Bioenergy, v. 122, n. 4, p. 1–16, 2019. https://doi.org/10.1016/j.biombioe.2019.01.005.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 17225-1: solid biofuels: general requirements. Brussels: ISO, 2014.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 18122: solid biofuels: determination of ash content. Brussels: ISO, 2015.

MAGDZIARZ, A.; GAJEK, M.; NOWAK-WO?NY, D.; WILK, M. Mineral phase transformation of biomass ashes - Experimental and thermochemical calculations. Renewable Energy, v. 128, p. 446–459, 2018. https://doi.org/10.1016/j.renene.2017.05.057.

QUÉNO, L. R. M.; SOUZA, A.N.; COSTA, A.F.; VALLE, A.T.; JOAQUIM, M.S. Technical aspects of wood pellet production. Ciencia Florestal, v. 29, n. 3, p. 1478–1489, 2019. https://doi.org/10.5902/1980509820606.

SILVA, S. B.; ARANTES, M.D.C.; ANDRADE, J.K.B. Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil. Renewable Energy, v. 147, p. 1870–1879, 2020. https://doi.org/10.1016/j.renene.2019.09.131.

SOUZA, H. J. P. L.; ARANTES, M.D.C.; VIDAURRE, G.B.; ANDRADE, C.R. Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production. Renewable Energy, v. 149, p. 128–140, 2020. https://doi.org/10.1016/j.renene.2019.12.015.

VASSILEV, S. V.; BAXTER, D.; VASSILEVA, C. G. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel, v. 208, p. 377–409, 2017. https://doi.org/10.1016/j.fuel.2017.07.036.

WHITTAKER, C.; SHIELD, I. Factors affecting wood, energy grass and straw pellet durability – A review. Renewable and Sustainable Energy Reviews, v. 71, p. 1–11, 2017. https://doi.org/10.1016/j.rser.2016.12.119.

XIA, X.; ZHANG, K.; XIAO, H.; SONG, Z. Effects of additives and hydrothermal pretreatment on the pelleting process of rice straw: Energy consumption and pellets quality. Industrial Crops and Products, v. 133, n. 6, p. 178–184, 2019. https://doi.org/10.1016/j.indcrop.2019.03.007.

Downloads

Publicado

2024-12-17

Como Citar

Garcia, D. P., Caraschi, J. C., Protásio, T. de P., Scatolino, M. V., Vieira, F. H. A., & Viana, R. da S. (2024). Limitations of bamboo and sugarcane pellets in domestic and industrial systems . Revista Em Agronegócio E Meio Ambiente, 17, e11271. https://doi.org/10.17765/2176-9168.2024v17n.Especial.e11271