Respostas morfofisiológicas de plantas de milho e jiló ao estresse hídrico induzido

Palavras-chave: Zea mays, Solanum gilo, Déficit hídrico e Plantas C3 e C4

Resumo

O déficit hídrico é um dos fatores mais impactantes que alteram seriamente a fisiologia das plantas, levando finalmente ao declínio da produtividade das culturas. Dessa maneira, é fundamental a compreensão do comportamento morfofisiológico das plantas com metabolismo C3 e C4 em relação a diferentes níveis de déficit hídrico para que estratégias de manejo sejam desenvolvidas. Portanto, avaliamos o impacto do estresse hídrico induzido nas características morfofisiológicas de plantas de milho (Zea mays L.) e jiló (Solanum gilo Raddi). O experimento foi conduzido em delineamento inteiramente casualizado, sendo os tratamentos constituídos por combinação fatorial de duas espécies de plantas, milho (C4) e Jiló (C3), e três níveis de umidade do solo T1 (50%), T2 (65%) e T3 (90%) com quatro repetições. Foram avaliadas as variáveis de crescimento, relações alométricas e aspectos fotossintéticos. Verificamos que o regime hídrico induzido severo afetou significativamente a germinação, emergência, crescimento e estádios fenológicos, além de causar decréscimo na taxa fotossintética nas duas espécies estudadas, no entanto, com maior impacto no jiló. O milho (C4) desempenhou maior eficiência fotossintética em relação ao jiló (C3), mesmo em condições de regime hídrico severo.

Biografia do Autor

João Cleber Cavalcante Ferreira, Universidade Federal do Amazonas - UFAM
Doutorando no programa de Pós-graduação em Agronomia Tropical pela Universidade Federal do Amazonas, Mestre em Agricultura do Trópico Úmido pelo Instituto Nacional de Pesquisas Amazônicas - INPA (2020-2022) e formado em agronomia pela Universidade Federal do Amazonas-UFAM ( 2014 - 2019). Atualmente atua nas áreas de produção vegetal com ênfase em fertilidade do solo, adubação e nutrição mineral de plantas como pau-rosa e guaraná.
Jozângelo Fernandes da Cruz, Universidade Federal do Amazonas - UFAM
Professor no Instituto Federal de Educação, Ciência e Tecnologia do Acre. Doutorando no programa de Pós-graduação em Agronomia Tropical pela Universidade Federal do Amazonas – UFAM, Brasil.
Tassia Michelli Nogueira Negreiros, Universidade Federal do Amazonas - UFAM
Mestre em Agronomia Tropical pela Universidade Federal do Amazonas- UFAM. Doutoranda no programa de Pós-graduação em Agronomia Tropical pela Universidade Federal do Amazonas – UFAM, Brasil.
Wildson Benedito Mendes Brito, Universidade Federal do Amazonas - UFAM
Mestrado em Agronomia Tropical pela Universidade Federal do Amazonas (2020). Doutorando no programa de Pós-graduação em Agronomia Tropical pela Universidade Federal do Amazonas – UFAM, Brasil.
Alan Ferreira Leite Lima, Universidade Federal do Amazonas - UFAM
Doutorando em Agronomia Tropical, com linha de pesquisa em Nutrição Mineral de Plantas pela Universidade Federal do Amazonas - UFAM, Brasil.
Aline Ellen Duarte de Souza, Universidade Federal do Amazonas - UFAM
Doutorado em Fisiologia Vegetal na Universidade Federal de Viçosa - UFV/MG. Professora Adjunto I da Universidade Federal do Amazonas (UFAM), Brasil.

Referências

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische zeitschrift, v. 22, n. 6, p. 711-728, 2013. https://doi.org/10.1127/0941-2948/2013/0507

ARANTES, M. K.; SILVA FILHO, M. P.; PENNACCHI, J. P.; MENDONÇA, A. M. C.; BARBOSA, J. P. R. A. D. (2020). Phenotypic plasticity of leaf anatomical traits helps to explain gas-exchange response to water shortage in grasses of different photosynthetic types. Theoretical and Experimental Plant Physiology, v. 32, p. 341-356, 2020. https://doi.org/10.1007/s40626-020-00190-x

BARROS, J. R. A.; GUIMARÃES, M. J. M.; SIMÕES, W. L.; MELO, N. F. D.; & ANGELOTTI, F. Water restriction in different phenological stages and increased temperature affect cowpea production. Ciência e Agrotecnologia, v. 45, p. e022120, 2020. https://doi.org/10.1590/1413-7054202145022120

BANSAL, S.; THAKUR, A.; SINGH, S.; BAKSHI, M.; & BANSAL, S. Changes in crop physiology under drought stress: A review. Journal of Pharmacognosy and Phytochemistry, v. 8, n. 4, p. 1251-1253, 2019.

BATISTA, I. M. P. Recomendação de calagem para alguns solos do Estado do Amazonas. Universidade Federal do Amazonas, 2014. 46p. Tese (Doutorado em Agronomia Tropical), Universidade Federal do Amazonas. https://tede.ufam.edu.br/bitstream/tede/4039/2/TeseIza%20M%20P%20Batista.pdf

BENINCASA, M. M. P. Análise de crescimento de plantas: noções básicas, Jaboticabal, 42 p. SP: FUNEP, 2003.

CUI H. Challenges and approaches to crop improvement through C3-to-C4 engineering. Frontiers in plant science, v. 12, p. 715391, 2021. https://doi.org/10.3389/fpls.2021.715391

DA MATA, C. R.; DE CASTRO, A. P.; LANNA, A. C.; BORTOLINI, J. C.; & DE MORAES, M. G. Physiological and yield responses of contrasting upland rice genotypes towards induced drought. Physiology and Molecular Biology of Plants, v. 29, n. 2, p. 305-317, 2023. https://doi-org.ez2.periodicos.capes.gov.br/10.1007/s12298-023-01287-8

DARYANTO, S.; WANG, L.; JACINTHE, P.-A. Global synthesis of drought effects on maize and wheat production. PloS one, v. 11, n. 5, p. e0156362, 2016. https://doi.org/10.1371/journal.pone.0156362

FERREIRA, D. F. SISVAR: A computer analysis system to fixed effects split plot type designs: Sisvar. Brazilian Journal of Biometrics, v. 37, n. 4, p. 529-535, 2019. https://doi.org/10.28951/rbb.v37i4.450

FREIRE, J. C.; RIBEIRO, M. A. V.; BAHIA, V. G.; LOPES, A. S.; AQUINO, L. D. Resposta do milho cultivado em casa de vegetação a níveis de água em solos da região de Lavras (MG). Revista Brasileira de Ciência do Solo, v. 4, n. 1, p. 5-8, 1980.

GATABAZI, A.; MARAIS, D., STEYN, M. J.; ARAYA, H. T.; MOFOKENG, M. M.; & MOKGEHLE, S. N. Evaluating growth, yield, and water use efficiency of African and commercial ginger species in South Africa. Water, v. 11, n. 3, p. 548, 2019. https://doi.org/10.3390/w11030548

HALLI, H. M.; ANGADI, S.; KUMAR, A. et al. Assessment of planting method and deficit irrigation impacts on physio-morphology, grain yield and water use efficiency of maize (Zea mays L.) on vertisols of semi-arid tropics. Plants, v. 10, n. 6, p. 1094, 2021. https://doi.org/10.3390/plants10061094

HUSSAIN, H. A.; MEN, S.; HUSSAIN, S.; CHEN, Y.; ALI, S.; ZHANG, S.; ZHANG, K.; LI, Y.; XU, Q.; LIAO, C.; WANG, L. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific reports, v. 9, n. 1, p. 3890, 2019. https://doi.org/10.1038/s41598-019-40362-7

KILLI, D.; BUSSOTTI, F.; RASCHI, A.; HAWORTH, M. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiologia plantarum, v. 159, n. 2, p. 130-147, 2016. https://doi.org/10.1111/ppl.12490

KAPOOR, D.; BHARDWAJ, S.; LANDI, M.; SHARMA, A.; RAMAKRISHNAN, M.; & SHARMA, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, v. 10, n. 16, p. 5692, 2020. https://doi.org/10.3390/app10165692

LIAO, K. L.; JONES, R. D.; MCCARTER, P.; TUNC-OZDEMIR, M.; DRAPER, J. A.; ELSTON, T. C.; & JONES, A. M. A shadow detector for photosynthesis efficiency. Journal of theoretical biology, v. 414, p. 231-244, 2017. https://doi: 10.1016/j.jtbi.2016.11.027

MALAVOLTA, E. Elementos de nutrição mineral de plantas. São Paulo: Agronômica Ceres, 1980.

MIAMOTO, J. B. M.; AAZZA, S.; RUAS, N. R.; CARVALHO, A. A.; PINTO, J. E. B. P.; RESENDE, L. V.; BERTOLUCCI, S. K. V. Optimization of the extraction of polyphenols and antioxidant capacities from two types of Solanum gilo raddi using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, v. 16, p. 100238, 2020. https://doi.org/10.1016/j.jarmap.2019.100238

MORALES, F.; ANCÍN, M.; FAKHET, D.; GONZÁLEZ-TORRALBA, J.; GÁMEZ, A. L.; SEMINARIO, A.; & ARANJUELO, I. Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, v. 9, n. 1, p. 88, 2020. https://doi.org/10.3390/plants9010088

PEIXOTO, C. P. Princípios da fisiologia vegetal: teoria e prática. Ed.– Rio de Janeiro: Pod, 2020. 256 p.

PIPATSITEE, P.; THEERAWITAYA, C.; TIASARUM, R.; SAMPHUMPHUANG, T.; SINGH, H. P.; DATTA, A.; CHA-UM, S. Physio-morphological traits and osmoregulation strategies of hybrid maize (Zea mays) at the seedling stage in response to water-deficit stress. Protoplasma, p. 1-15, 2021. https://doi.org/10.1007/s00709-021-01707-0

SANTOS JUNIOR, U. M.; GONÇALVES, J. F. C.; FELDPAUSCH, T. R. Growth, leaf nutrient concentration and photosynthetic nutrient use efficiency in tropical tree species planted in degraded areas in central Amazonia. Forest ecology and management, v. 226, n. 1-3, p. 299-309, 2006. https://doi.org/10.1016/j.foreco.2006.01.042

SANTOS, R. D.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C.; SHIMIZU, S. H. Manual de descrição e coleta de solos no campo. 7. ed. Viçosa. Sociedade brasileira de Ciência do solo.2018, 102 p.

SELEIMAN, M. F.; AL-SUHAIBANI, N.; ALI, N.; AKMAL, M.; ALOTAIBI, M.; REFAY, Y.; DINDAROGLU, T.; ABDUL-WAJID, H.H. & BATTAGLIA, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, v, 10, n. 2, p.259, 2021. https://doi.org/10.3390/plants10020259

SOURESHJANI, H. K.; NEZAMI, A.; KAFI, M.; & TADAYON, M. Responses of two common bean (Phaseolus vulgaris L.) genotypes to deficit irrigation. Agricultural Water Management, v. 213, p. 270-279, 2019. https://doi.org/10.1016/j.agwat.2018.09.038

SONG, L.; JIN, J.; HE, J. Effects of severe water stress on maize growth processes in the field. Sustainability, v. 11, n. 18, p. 5086, 2019. https://doi.org/10.3390/su11185086

SONMEZ, M. C.; OZGUR, R.; UZILDAY, B.; TURKAN, I.; GANIE, S. A. Redox regulation in C3 and C4 plants during climate change and its implications on food security. Food and Energy Security, p. e387, 2022. https://doi.org/10.1002/fes3.387

TAIZ, L.; ZEIGER, E.; MOLLER, I. M.; MURPHY, A. Fisiologia e desenvolvimento vegetal. 6 ed. Porto Alegre: Artmed, 2017.

VELJKOVIĆ, V. B.; BIBERDŽIĆ, M. O.; BANKOVIĆ-ILIĆ, I. B.; DJALOVIĆ, I. G.; TASIĆ, M. B.; NJEŽIĆ, Z. B.; STAMENKOVIĆ, O. S. Biodiesel production from corn oil: A review. Renewable and Sustainable Energy Reviews, v. 91, p. 531-548, 2018. https://doi.org/10.1016/j.rser.2018.04.024

VITKAUSKAITE, G. & VENSKAITYTE, L. Differences between C3 (Hordeum vulgare L.) and C4 (Panicum miliaceum L.) plants with respect to their resistance to water deficit. J. Zemdirbyste Agriculture, v. 98, p. 349-356, 2011. Acessado em dezembro, 2022. Disponível em: <https://hdl.handle.net/20.500.12259/42239>.

WANG, C.; GUO, L.;LI, Y.; WANG, Z. Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC systems biology, p. 1-14, 2012. https://doi.org/10.1186/1752-0509-6-s2-s9

XING, H.; ZHOU, W.; WANG, C.; LI, L.; LI, X.; CUI, N.; HAO, W.; LIU, F.; WANG, Y. Excessive nitrogen application under moderate soil water deficit decreases photosynthesis, respiration, carbon gain and water use efficiency of maize. Plant Physiology and Biochemistry, v. 166, p. 1065-1075, 2021. https://doi.org/10.1016/j.plaphy.2021.07.014

YAMORI, W.; HIKOSAKA, K.; WAY, D. A. Temperature response of photosynthesis in C 3, C 4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis research, v. 119, p. 101-117, 2014. https://doi.org/10.1007/s11120-013-9874-6

ZAREI, T. Balancing water deficit stress with plant growth-promoting rhizobacteria: A case study in maize. Rhizosphere, p. 100621, 2022. https://doi.org/10.1016/j.rhisph.2022.100621

Publicado
2024-03-29
Seção
Agronegócio