Activation of antioxidant enzymes as a mechanism against cadmium stress in Mimosa scabrella

Autores

DOI:

https://doi.org/10.17765/2176-9168.2024v17n4e11973

Palavras-chave:

Áreas contaminadas, Bracatinga, Sistema de defesa antioxidante

Resumo

Among the elements that cause serious consequences to the environment and to living beings, cadmium (Cd) is considered one of the most harmful. When reaching high levels of Cd contamination in an area, vegetation suppression can occur. Thus, the objective was to analyze the effects of Cd on morphological and biochemical variables of Mimosa scabrella, in order to evaluate its potential for use in environments polluted by Cd. M. scabrella seedlings were grown in five concentrations of Cd (0, 25, 50, 75 and 100 µM). The morphological variables of leaves and roots, photosynthetic pigments, antioxidant enzyme activity, as well as the content of hydrogen peroxide and lipid peroxidation (MDA) were evaluated. No negative effects were observed on the total length and surface area of roots at concentrations lower than 75 µM Cd. Cd stress activated enzymatic antioxidants, mainly in roots of M. scabrella seedlings, thus causing maintenance in the production of biomass of roots and shoot of seedlings. Thus, the species tolerated high concentrations of Cd and could be recommended for phytoremediation of soils contaminated with cadmium.

Biografia do Autor

Gerâne Silva Wertonge, Universidade Federal de Santa Maria

Doutoranda no Programa de Pós-Graduação em Engenharia Florestal da Universidade Federal de Santa Maria (UFSM), Santa Maria (RS), Brasil

Marcos Vinícius Miranda Aguilar, Universidade Federal de Santa Maria

Doutorando no Programa de Pós-Graduação em Engenharia Florestal da Universidade Federal de Santa Maria (UFSM), Santa Maria (RS), Brasil

Daiane Franchesca Senhor, Universidade Federal de Santa Maria

Mestre em Agrobiologia pela Universidade Federal de Santa Maria – (UFSM), Santa Maria (RS), Brasil

Caroline Castro Kuinchtner, Universidade Federal de Santa Maria

Doutoranda no Programa de Pós-Graduação em Engenharia Florestal da Universidade Federal de Santa Maria (UFSM), Santa Maria (RS), Brasil

Daniele Guarienti Rorato, Universidade Federal de Santa Maria

Doutora em Engenharia Florestal, Professora da Universidade Estadual do Oeste do Paraná (UNIOESTE), Centro de Ciências Agrárias, Campus Marechal Cândido Rondon (PR), Brasil

Luciane Almeri Tabaldi, Universidade Federal de Santa Maria

Doutora em Agronomia pela Universidade Federal de Santa Maria. Docente Departamento de Biologia da Universidade Federal de Santa Maria, Santa Maria (RS), Brasil.

Referências

AKBAR, K. F., HALE, W. H. G., HEADLEY, A. D, ATHAR, M. Heavy metal contamination of roadside soils of northern England. Soil and Water Research, v. 4, p. 158-163, 2006.

ALSHERIF, E. A.; AL-SHAIKH, T. M.; ABDELGAWAD, H. Heavy Metal Effects on Biodiversity and Stress Responses of Plants Inhabiting Contaminated Soil in Khulais. Saudi Arabia. Biology, v. 11, n. 164, p. 1-21, 2022.

BAMAGOOS, A. A.; ALHARBY, H. F.; ABBAS, G. Differential Uptake and Translocation of Cadmium and Lead by Quinoa: A Multivariate Comparison of Physiological and Oxidative Stress Responses. Toxics, v. 10, n. 68, p. 1-17, 2022.

BRASIL, Resolução CONAMA nº 420, de 28 de dezembro de 2009.

COVRE, W. P.; PEREIRA, W. V. DA S.; GONÇALVES, D. A. M.; TEIXEIRA, O. M. M.; AMARANTE, C. B.; FERNANDES, A. R. Phytoremediation potential of Khaya ivorensis and Cedrela fissilis in copper contaminated soil. Journal of Environmental Management, v. 268, p. 1-8, 2020.

CUPERTINO, I. C. F. S. Respostas morfofisiológicas e nutricionais de plantas jovens de seringueira Hevea brasiliensis [(Willd. Ex. Adr. de Juss.) Muell.-Arg.] cultivadas na presença de alumínio, cádmio, níquel e zinco. 2006. 116 p. Tese (Doutorado em Agronomia) - Universidade Federal de Lavras, Lavras, 2006.

EL-MOSHATY, F. I. B.; PIKE, S. M.; NOVACKY, A. J.; SEHGAL, O. P. Lipid peroxidation and superoxide productions in cowpea (Vigna unguicultata) leaves infected with tobacco rings virus or southern bean mosaic virus. Journal Physiological and Molecular Plant Pathology, v.43, p. 109-119, 1993.

FERREIRA, D. F. SISVAR: A computer analysis system to fixed effects Split plot type designs. Revista Brasileira de Biometria, v. 37, p. 529-535, 2019.

FERREIRA, P. I.; GOMES, J. P.; STEDILLE, L. I. B.; BORTOLUZZI, R. L. C.; MANTOVANI, A. Mimosa scabrella Benth. as Facilitator of Forest Successional Advance in the South of Brazil. Floresta e Ambiente, v. 26, n. 4, p. 1-11, 2019.

FOCKINK, G. D.; ZANGALLI, C.; OLIVEIRA, E.; LUZ, M. S.; GOES, M. P.; SILVA, A. C.; FLORIANI, M. M. P.; NICOLETTI, M. F.; KANIESKI, M. R. Ecological indicators of passive restoration in South Brazil’s Atlantic Forest areas with former Pinus taeda L. plantations. Ecological Engineering, v. 179, p. 1-10, 2022.

GIANNOPOLITIS, C. N., RIES, S. K. Purification and quantitative relationship with water-soluble protein in seedlings. Journal of Plant Physiology, v. 48, p. 315-318, 1977.

GONÇALVES, P. J. R. O.; VIEIRA, L. C.; NOGUEIRA, A. V; CORSEUIL, H. X.; MEZZARI, M.P. Tolerance of tree reforestation species (Schizolobium parahyba, Mimosa scabrella and Enterolobium contortisiliquum) to Gasoline and Diesel Phytotoxicity Assays. Journal of Bioremediation & Biodegradation, S7:004, p. 1-8, 2012.

HAIDER, F. U.; LIQUN, C.; COULTER, J. A.; CHEEMA, S. A.; WU, J.; ZHANG, R.; WENJUN, M.; FAROOQ, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, v. 211, p. 3-22, 2021.

HASSAN, M. J; RAZA, M. A.; REHMAN, S. U; ANSAR, M., GITARI, H., KHAN, I.; WAJID, M.; AHMED, M.; SHAH, G. A.; PENG, Y.; LI, Z. Effect of Cadmium Toxicity on Growth, Oxidative Damage, Antioxidant Defense System and Cadmium Accumulation in Two Sorghum Cultivars. Plants, v. 9, n. 11, p. 1-14, 2020.

HISCOX, J. D., ISRAELSTAM, G. F. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, v. 57, p. 1132-1334, 1979.

HOAGLAND, D. R., ARNON, D. I. The waterculture method for growing plants without soil. Berkeley, CA: Agric. Exp. Stn., Univ. Of California. (Circ. 347). 1950.

HOEKSTRA, N. J.; SUTER, M.; FINN, J. A.; HUSSE, S.; LÜSCHER, A. Do belowground vertical niche differences between deep- and shallow-rooted species enhance resource uptake and drought resistance in grassland mixtures?. Plant and Soil, v. 394, p. 21-34, 2014.

HUNGRIA, L. C., OLIVEIRA, E. S., SAMPAIO, I. M. G., SOUZA, E. S., FERNANDES, A. R. Tolerância de plantas de Jambu (Acmella oleracea) cultivadas em solo contaminado por cádmio [Tolerance of jambu (Acmella oleracea) plants grown in cadmium contaminated soil]. Brazilian Journal of Development, v. 5, n. 11, p. 26211-26219, 2019.

LICHTENTHALER, H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer, L., Douce, R. (eds). Methods in Enzimology, London: Academic Press. v. 148, p. 350-381, 1987.

LIU, L.; CHEN, H.; YUAN, J.; WANG, Y.; WENG, B.; LIU, P.; LI, G. Effects of cadmium stress on physiological indexes and fruiting body nutritions of Agaricus brasiliensis. Scientific Reports, v. 11, n.1, p. 1-12, 2021.

LORETO, F., VELIKOVA, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, v. 12, p. 1781-1787, 2001.

KUBIER, A.; WILKIN, R. T.; PICHLER, T. Cadmium in soils and groundwater: A review. Applied Geochemistry, v. 108, p. 1-16, 2019.

NIEDZWIEDZKI, D. M.; SWAINSBURY, D. J. K.; CANNIFFE, D. P.; HUNTER, C. N.; HITCHCOCK, A. A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection. Proceedings of the National Academy of Sciences, v. 117, p. 1-7, 2020.

ROCA, L. F.; ROMERO, J.; BOHÓRQUEZ, J. M.; ALCÁNTARA, E.; FERNÁNDEZ-ESCOBAR, R.; TRAPERO, A. Nitrogen status affects growth, chlorophyll content and infection by Fusicladium oleagineum in olive. Crop Protection, v. 109, p. 80-85, 2018.

SHAARI, N. E. M.; TAJUDIN, M. T. F. M.; KHANDAKER, M. M.; MAJRASHI, A.; ALENAZI, M. M.; ABDULLAH, U. A.; MOHD, K. S. Cadmium toxicity symptoms and uptake mechanism in plants: a review. Brazilian Journal of Biology, v. 84, p. 1-17, 2022.

SCHMITT, O. J.; BRUNETTO, G.; CHASSOT, T.; TIECHER, T. L.; MARCHEZAN, C.; TAROUCO, C. P.; DE CONTI, L.; LOURENZI, C. R.; NICOLOSO, F. T.; KREUTZ, M. A.; ANDRIOLO, J. L. Impact of Cu concentrations in nutrient solution on growth and physiological and biochemical parameters of beet and cabbage and human health risk assessment. Scientia Horticulturae, v. 272, p. 1-09, 2020.

SILVA, E. P.; ARMAS, R. D.; FERREIRA, P. A. A.; DANTAS, M. K.; GIACHINI, A. J.; ROCHA-NICOLEITE, E.; GONZALEZ, A. H.; SOARES, F. S. Soil attributes in coal mining areas under recovery with bracatinga (Mimosa scabrella). Letters in Applied Microbiology, v. 68, p. 497-504, 2019.

SOUZA, E. P.; SILVA, I. F.; FERREIRA, L. Mecanismos de tolerância a estresses por metais pesados em plantas. Revista Brasileira de Agrociência, v. 17, n. 2, p. 167-173, 2011.

STORCK, L., GARCIA, D. C., LOPES, S. J., ESTEFANEL, V. Experimentação vegetal [Vegetable experimentation]. 3. ed. Santa Maria, RS: Editora da UFSM. 2016. 198p

SUBAŠI´C, M.; ŠAMEC, D.; SELOVI´C, A.; KARALIJA, E. Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. Soil Systems v. 6, n. 3,p. 1-21, 2022.

ULLAH, S.; KHAN, J.; HAYAT, K.; ELATEEQ, A. A.; SALAM, U.; YU, B.; MA, Y.; WANG, H.; TANG, Z. H. Comparative study of growth, cadmium accumulation and tolerance of three Chickpea (Cicer arietinum L.) cultivars. Plants, v. 9, n. 3, p. 1-18, 2020.

WORAHARN, S.; MEEINKUIRT, W.; PHUSANTISAMPAN, T.; CHAYAPAN, P. Rhizofiltration of Cadmium and Zinc in Hydroponic Systems. Water, Air, & Soil Pollution, v. 232, n. 5, p. 1-17, 2021.

ZERAIK, A. E.; SOUZA, F. S.; FATIBELLO-FILHO, O. Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação [Spot test development to monitor peroxidase activity in purification procedure]. Química Nova, v. 31, p. 731-734, 2008.

ZHANG, T.; HONG, M.; WU, M.; CHEN, B.; MA, Z. Oxidative stress responses to cadmium in the seedlings of a commercial seaweed Sargassum fusiforme. Acta Oceanologica Sinica, v. 39, n. 10, p. 147-154, 2020.

ZHAO, H.; GUAN, J.; LIANG, Q.; ZHANG, X.; HU, H.; ZHANG, J. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific Reports, v. 11, n. 1, p. 1-11, 2021.

ZHU, Z.; WEI, G.; LI, J.; QIAN, Q.; YU, J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, v. 167, n. 3, p. 527-533, 2004.

ZHU, T.; LI, L.; DUAN, Q.; LIU, X.; CHEN, M. Progress in our understanding of plant responses to the stress of heavy metal cadmium. Plant Signaling & Behavior, v.16, n.1, p. 1-8, 2020.

Downloads

Publicado

2024-12-10

Como Citar

Wertonge, G. S., Aguilar, M. V. M., Senhor, D. F., Kuinchtner, C. C., Rorato, D. G., & Tabaldi, L. A. (2024). Activation of antioxidant enzymes as a mechanism against cadmium stress in Mimosa scabrella. Revista Em Agronegócio E Meio Ambiente, 17(4), e11973. https://doi.org/10.17765/2176-9168.2024v17n4e11973

Edição

Seção

Meio Ambiente