Modeling and optimization of the kinetics of the pyrolysis process of forest biomass

Keywords: Computational analysis, Scilab, Thermoconversion

Abstract

Computational modeling and optimization in the field of industrial processes, specifically related to biomass pyrolysis, may be an asset in determining the best processing conditions. It may also contribute towards the growing demand for energy with environmental sustainability. Current study implements the optimization of techniques to adjust kinetic parameters and the application of a phenomenological mathematical model to describe the dynamic behavior of pyrolysis for oak (Quercus sp.) and tauari (Couratari sp.) biomasses. Scilab software, a high-level programming language, was employed for numerical analysis, scientific computing and parametric statistical tests. Results showed that the model was reliable when compared to experimental data from the literature for oak and data from laboratory experiments for Tauari. Variance analysis (ANOVA) showed that F value ranged from 2294.0248 to 41.6304, higher than F tabled at 5% significance level (0.0043 and 4.1055). This fact demonstrates that the model may predict the behavior of biomass pyrolysis under the simulated operating conditions.

Author Biographies

Dile Pontarolo Stremel, Universidade Federal do Paraná - UFPR
Docente Permanente do Departamento de Engenharia e Tecnologia Florestal da Universidade Federal do Paraná (UFPR), Curitiba (PR), Brasil.
Lincoln Audrew Cordeiro, Universidade Federal do Paraná - UFPR
Mestre do Programa de Pós-graduação em Engenharia Florestal da Universidade Federal do Paraná (UFPR), Curitiba (PR), Brasil.

References

BAUDIN, M.; COUVERT, V.; STEER, S. Optimization in scilab. Le Chesnay-Rocquencourt. The Scilab Consortium - Digiteo / INRIA, 2010. Disponível em: https://www.scilab.org/tutorials/optimization-scilab-–-tutorial#. Acesso em: 19 fev. 2021.

BRANDÃO, F. L. et al. Computational Study of Sugarcane Bagasse Pyrolysis Modeling in a Bubbling Fluidized Bed Reactor. Energy and Fuels, Washington, v. 32, n. 2, p. 1711-1723, 2018. DOI: https://doi.org/10.1021/acs.energyfuels.7b01603.

CARNEIRO, A. de C. O. et al. Pirólise Lenta da Madeira para a Produção de Carvão Vegetal. In: SANTOS, F.; COLODETTE, J.; QUEIROZ, J. H.. (org.). Bioenergia e Biorrefinaria. Cana de Açúcar e Espécies Florestais. Viçosa: Produção Independente, 2013. p. 429-457.

CHIRESHE, F.; COLLARD, F. X.; GÖRGENS, J. F. Production of low oxygen bio-oil via catalytic pyrolysis of forest residues in a kilogram-scale rotary kiln reactor. Journal of Cleaner Production, Amsterdam, v. 260, p. 1-11, 2020. DOI: http://dx.doi.org/10.1016/j.jclepro.2020.120987.

CIESIELSKI, P. N. et al. Simulating Biomass Fast Pyrolysis at the Single Particle Scale. In: CLARK, J. H.; KRAUS, G. A.; STANKIEWICZ, A.; SIEDL, P. (org.). Fast Pyrolysis of Biomass: Advances in Science and Technology. Cambridge: Chemistry, Royal Society of, 2017. p. 231-253. DOI: http://dx.doi.org/10.1039/9781788010245-00231.

CONESA, J. A. et al. Semivolatile and Volatile Compound Evolution during Pyrolysis and Combustion of Colombian Coffee Husk. Energy and Fuels, Washington, v. 30, n. 10, p. 7827-7833, 2016. DOI: http://dx.doi.org/10.1021/acs.energyfuels.6b00791.

CORREA, I. B.; SANTOS, L. de S. Simulação e otimização do processo de pirólise de biomassas. Revista Mundi Engenharia, Tecnologia e Gestão, Paranaguá, v. 4, n. 3, p. 1-14, 2019. DOI: http://dx.doi.org/10.21575/25254782rmetg2019vol4n3863.

DAVID, G. F. et al. Thermochemical conversion of sugarcane bagasse by fast pyrolysis: high yield of levoglucosan production. Journal of Analytical and Applied Pyrolysis, Netherlands, v. 133, p. 246-253, 2018. DOI: http://dx.doi.org/10.1016/j.jaap.2018.03.004.

DIAS JUNIOR, A. F. et al. Investigating the pyrolysis temperature to define the use of charcoal. European Journal of Wood and Wood Products, Berlin, v. 78, n. 1, p. 193-204, 2020. DOI: https://http://dx.doi.org/10.1007/s00107-019-01489-6.

EMPRESA DE PESQUISA ENERGÉTICA (Rio de Janeiro). Ministério de Minas e Energia. Balanço Energético Nacional 2020: relatório síntese, ano base 2019. Rio de Janeiro: Empresa de Pesquisa Energética, 2020. 73p. Disponível em: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2020. Acesso em: 19 fev. 2021.

FAHMY, T. Y. A. et al. Biomass pyrolysis: past, present, and future. Environment, Development and Sustainability, Netherlands, v. 22, n. 1, p. 17-32, 2020. DOI: http://dx.doi.org/10.1007/s10668-018-0200-5.

FÉLIX, C. R. de O. et al. Pirólise rápida de biomassa de eucalipto na presença de catalisador Al-MCM-41. Revista Materia, Cidade Universitária, v. 22, n. supl. 1, 2017. DOI: http://dx.doi.org/10.1590/s1517-707620170005.0251.

FOGLER, H. S. Elementos de Engenharia das Reações Químicas. 3. ed. Rio de Janeiro: LTC, 2002.

GOYAL, H. B.; SEAL, D.; SAXENA, R. C. Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and Sustainable Energy Reviews, United Kingdom, v. 12, n. 2, p. 504-517, 2008. DOI: http://dx.doi.org/10.1016/j.rser.2006.07.014.

GUL, S. et al. Kinetic, volatile release modeling and optimization of torrefaction. Journal of Analytical and Applied Pyrolysis, Netherlands, v. 128, p. 44-53, 2017. DOI: http://dx.doi.org/10.1016/j.jaap.2017.11.001.

HU, Z. et al. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis. Bioresource Technology, Essex, v. 194, p. 364-372, 2015. DOI: http://dx.doi.org/10.1016/j.biortech.2015.07.007.

LIN, B. J.; CHEN, W. H. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Frontiers in Energy Research, Lausanne, v. 3, p. 1-9, 2015. DOI: http://dx.doi.org/10.3389/fenrg.2015.00004.

LOPES, G. de A.; BRITO, J. O.; MOURA, L. F. de. Uso Energético de Resíduos Madeireiros na Produção de Cerâmicas no Estado de São Paulo. Ciência Florestal, Santa Maria, v. 26, n. 2, p. 679-686, 2016. DOI: http://dx.doi.org/10.5902/1980509822767.

MARTÍN-LARA, M. A. et al. Kinetic modelling of torrefaction of olive tree pruning. Applied Thermal Engineering, United Kingdon, v. 113, p. 1410-1418, 2017. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.11.147.

MELO, R. A. P. de. Estudos Para Contribuição na Modelagem Dinâmica e Simulação Computacional de Sistemas Térmicos: Processos de Gaseificação e Pirólise da Biomassa e da Combustão do Gás Natural. 2012. 118 f. Dissertação (Mestrado) - Curso de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Federal de Pernambuco, Recife, 2012. Disponível em: https://repositorio.ufpe.br/handle/123456789/11907. Acesso em: 19 fev. 2021.

MOTA, F de A. da S. et al. Pyrolysis of Lignocellulose Biomass: a Review. Revista Geintec, São Cristóvão, v. 5, n. 4, p. 2511-2525, 2015. DOI: http://dx.doi.org/10.7198/s2237-0722201500040003.

MÜLLER, N. et al. Pirólise Rápida da Madeira para a Produção de Bio-óleo. In: SANTOS, F.; COLODETTE, J.; QUEIROZ, J. H. (org.). Bioenergia e Biorrefinaria. Cana de Açúcar e Espécies Florestais. Viçosa: Produção Independente, 2013. p. 459-481.

NORAINI, M. N. et al. Single-route synthesis of magnetic biochar from sugarcane bagasse by microwave-assisted pyrolysis. Materials Letters, Amsterdam, v. 184, p. 315-319, 2016. DOI: http://dx.doi.org/10.1016/j.matlet.2016.08.064.

ÖZBAY, G.; ÖZÇIFÇI, A.; KÖKTEN, E. S. The pyrolysis characteristics of wood waste containing different types of varnishes. Turkish Journal of Agriculture and Forestry, Ankara, v. 40, n. 5, p. 705-714, 2016. DOI: http://dx.doi.org/10.3906/tar-1502-88.

PRAKASH, N.; KARUNANITHI, T. Kinetic Modeling in Biomass Pyrolysis - A Review. Applied Sciences Research, Iran, v. 4, n. 12, p. 1627-1636, 2008. Disponível em: http://www.aensiweb.com/old/jasr/jasr/2008/1627-1636.pdf. Acesso em: 19 fev. 2021.

ROWELL, R. M.; DIETENBERGER, M. A. Thermal Properties, Combustion, and Fire Retardancy of Wood. In: ROWELL, R. M. (org.). Handbook of Wood Chemistry and Wood Composites. 2. ed. Boca Raton: Taylor & Francis Group, LLC, 2013. p. 127-150.

SANTIAGO, B. L. S.; RODRIGUES, F. de A. Processamento de Biomassa Lignocelulósica Para Produção de Etanol: Uma Revisão. The Journal of Engineering and Exact Sciences, Viçosa, v. 3, n. 7, p. 1011-1022, 2017. DOI: https://doi.http://dx.doi.org/10.18540/jcecvl3iss7pp1011-1022.

SETTER, C. et al. Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel, Guildford, v. 261, p. 1-11, 2020. DOI: http://dx.doi.org/10.1016/j.fuel.2019.116420.

SHAFIZADEH, F.; CHIN, P. P. S. Thermal Deterioration of Wood. In: GOLDSTEIN, I. S. (org.). Wood Technology: Chemical Aspects, Washington. p. 57-81, 1977. DOI: http://dx.doi.org/10.1021/bk-1977-0043.ch005.

SJÖSTRÖM, E. Wood-based Chemicals and Pulping by Products. In: WOOD chemistry: fundamentals and applications. 2. ed. Cambridge: Academic Press, Inc., 1992. p. 225-248.

TANG, S. et al. Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals. Energy, Oxford, v. 153, p. 921-932, 2018. DOI: http://dx.doi.org/10.1016/j.energy.2018.04.108.

TANG, S.; ZHENG, C.; ZHANG, Z. Effect of inherent minerals on sewage sludge pyrolysis: Product characteristics, kinetics and thermodynamics. Waste Management, Elmsford, v. 80, p. 175-185, 2018. DOI: http://dx.doi.org/10.1016/j.wasman.2018.09.012.

THURNER, F.; MANN, U. Kinetic Investigation of Wood Pyrolysis. Industrial and Engineering Chemistry Process Desing and Development, Washington, v. 20, n. 3, p. 482-488, 1981. DOI: http://dx.doi.org/10.1021/i200014a015.

VELDEN, M. V. de; BAEYENS, J.; BOUKIS, I. Modeling CFB biomass pyrolysis reactors. Oxford, v. 32, n. 2, p. 128-139, 2008. DOI: http://dx.doi.org/10.1016/j.biombioe.2007.08.001.

WEI, L. et al. Nitrogen Transformation during Sewage Sludge Pyrolysis. Energy and Fuels, Washington, v. 29, n. 8, p. 5088-5094, 2015. DOI: http://dx.doi.org/10.1021/acs.energyfuels.5b00792.

YEO, J. Y. et al. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. Journal of the Energy Institute, United Kingdom, v. 92, n. 1, p. 27-37, 2019. DOI: http://dx.doi.org/10.1016/j.joei.2017.12.003.

Published
2023-02-17
Section
Tecnologias Limpas