Analysis of the environmental management of cassava starch industries: opportunities for a cleaner production

Keywords: Bagasse, Biodigester, Enffluents, Natural resources

Abstract

Cassava processing to obtain starch generates large amounts of solid waste and effluents that can become environmental liabilities. The aim of this study was to profile the cassava industries in Paraná, Brazil, regarding the use of natural resources and waste generated, as well as the environmental management strategies adopted, to identify opportunities that result in Cleaner Production (CMP). A questionnaire was applied in 18 industries, and the bagasse generated in seven of them had its physical-chemical composition determined. The amount of bagasse generated ranged from 200 to 1000 kg ton-1 of processed roots, that was generally intended for animal feed; but it has potential for other applications due to its starch content (57.7 g 100 g-1) and dietary fibers (35.3 g 100 g-1). There was significant water consumption (1.50 to 19.20 m³ ton-1 of roots) resulting in high effluent generation (1.25 to 11.52 m³ ton-1 of roots), which entails costs for treatment in ponds. All the industries have biodigesters, a covered lagoon system, one of the main CP mechanisms, as it enables firewood savings, a reduction in greenhouse gas emissions and the generation of waste from boilers, and there is production of energy and biofertilizers. Of the industries, ~30% stood out in terms of efficiency in water consumption, generation of solid and liquid waste, with cost reduction in effluent treatment. The transfer of technologies between industries is important to promote the sustainability of the production chain, with the adoption of CP.

References

ANDRADE-MAHECHA, M. M.; PELISSARI, F. M., TAPIA-BLÁCIDO, D. R., MENEGALLI, F. C. Achira as a source of biodegradable materials: Isolation and characterization of nanofibers. Carbohydrate Polymers, v. 123, p. 406-415, 2015.DOI: https://doi.org/10.1016/j.carbpol.2015.01.027

AOAC - Association of Official Analytical Chemists. Official methods of analysis. 18 ed. Maryland, United States, 2005. 1094 p.

BRASIL. Lei 12.305. Estabelece a Política Nacional de Resíduos Sólidos; Altera a Lei nº 9.605, de 12 de fevereiro de 1998; e toma outras providências. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília DF, 2010.

CEREDA, M. P. Produtos e Subprodutos. In: SOUZA, L. S.; FARIAS, A. R. N; MATTOS, P. L. P.; FUKUDA, W. M. G. Processo e Utilização da Mandioca. EMBRAPA Informação Tecnológica, Brasília, pp.17-56, 2005.

CHAVALPARIT, O.; ONGWANDEE, M. Clean technology for the tapioca starch industry in Thailand. Journal of Cleaner Production, v. 17, p. 105–110, 2009. DOI: https://doi.org/10.1016/j.jclepro.2008.03.001

CHEN, H.; CHEN, B.; SU, Z.; WANG, K.; WANG, B.; WANG, Y.; SI, Z.; WU, Y.; CAI, D.; QIN, P. Efficient lactic acid production from cassava bagasse by mixed culture of Bacillus coagulans and Lactobacillus rhamnosus using stepwise pH controlled simultaneous saccharification and co-fermentation. Industrial Crops and Products, v. 146, p. 112175, 2020. DOI: https://doi.org/10.1016/j.indcrop.2020.112175.

COLIN, X.; FARINET, J.L.; ROJAS, O.; ALAZARD, D. Anaerobic treatment of cassava starch extraction wastewater using a horizontal flow filter with bamboo as support. Bioresource Technology, United Kingdon, v. 98 p. 1602–1607, 2007. DOI: https://doi.org/10.1016/j.biortech.2006.06.020

CREMONEZ, P. A.; TELEKEN, J. G.; MEIER, T. R.; ALVES, H. J. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review. Journal of Environmental Management, United States v. 281, p.111854, 2021. DOI: https://doi.org/10.1016/j.jenvman.2020.111854

FAO – Food and Agriculture Organization of the United Nations. FAOSTAT. Avaliable at: http://www.fao.org/faostat/en/#data/QC. Accessed on 05 july 2022.

FIORDA, F. A.; SOARES, J. M. S.; SILVA, F. A.; MOURA, C. M. A.; GROSSMANN, M.V.E. Physical quality of snacks and technological properties of pre-gelatinized flours formulated with cassava starch and dehydrated cassava bagasse as a function of extrusion variables. LWT - Food Science and Technology, v. 62, p. 1112- 1119, 2015. DOI: https://doi.org/10.1016/j.lwt.2015.02.030.

FIORDA, F. A.; SOARES, J. M. S.; SILVA, F. A.; MOURA, C. M. A.; GROSSMANN, M. V. E.; SOUTO, L. R. F. Microestructure, texture and colour of glutem-free pasta made with amaranth flour, cassava starch and cassava bagasse. LWT - Food Science and Technology, v. 54, p. 132-138, 2013. DOI: https://doi.org/10.1016/j.lwt.2013.04.020.

GEEM, Z. W.; KIM, J. H. Wastewater treatment optimization for fish migration using harmony search. Mathematical Problems in Engineering, v. 2014, p. 313157, 2014. DOI: https://doi.org/10.1155/2014/313157.

GHIMIRE, A.; SEN, R.; ANNACHHATRE, A. P. Biosolid Management Options in Cassava Starch Industries of Thailand: Present Practice and Future Possibilities. Procedia Chemistry, v. 14, p. 66–75, 2015. DOI: https://doi.org/10.1016/j.proche.2015.03.011

HANSUPALAK, N.; PIROMKRAIPAK, P.; TAMTHIRAT, P.; MANITSORASAK, A.; SRIROTH, K.; TRAN, T. Biogas reduces the carbon footprint of cassava starch: a comparative assessment with fuel oil. Journal of Cleaner Production, v. 134, p. 539–546, 2016. DOI: https://doi.org/10.1016/j.jclepro.2015.06.138.

KAMARAJ. A.; GOPAL, N.O.; VENKATACHALAM, P.; SAMPATHRAJAN, A. Biofuel production from tapioca starch industry wastewater using a hybrid anaerobic reactor. Energy for Sustainable Development, v. 10, p. 73–77, 2006. DOI: https://doi.org/10.1016/S0973-0826(08)60547-5.

KELLER, M.; AMBROSIO, E.; OLIVEIRA, V. M.; GÓES, M. M.; CARVALHO, G. M.; BATISTELA, V. R.; GARCIA, J. C. Polyurethane foams synthesis with cassava waste for biodiesel removal from water bodies. Bioresource Technology Reports, v.10, p. 10039, 2020. DOI: https://doi.org/10.1016/j.biteb.2020.100396.

MARTINEZ, D. G.; FEIDEN, A.; BARICCATTI, R.; ZARA, K. R. F. Ethanol production from waste of cassava processing. Applied Sciences, v. 8, p. 1–8, 2018. DOI: https://doi.org/10.3390/app8112158.

OGHENEJOBOH, K. Effects of Cassava Wastewater on the Quality of Receiving Water Body Intended for Fish Farming. British Journal of Applied Science & Technology, v. 6, p. 164-171, 2015. DOI: http://dx.doi.org/10.9734/BJAST/2015/14356

OGHENEJOBOH, K. M.; ORUGBA, H. O.; OGHENEJOBOH, U. M.; AGARRY, S. E. Value added cassava waste management and environmental sustainability in Nigeria: A review. Environmental Challenges, v. 4, p. 100127, 2021. DOI: https://doi.org/10.1016/j.envc.2021.100127.

PARANÁ. Conselho Estadual de Meio Ambiente - CEMA. Resolução Nº. 70/2009. Dispõe sobre o licenciamento ambiental, estabelece condições e critérios e dá outras providências para os Empreendimentos Industriais Curitiba: CEMA, 2009.

PADI, R. K.; CHIMPHANGO, A. Feasibility of commercial waste biorefineries for cassava starch industries: Techno-economic assessment. Bioresource, v. 297, p. 122461, 2020a.DOI: https://doi.org/10.1016/j.biortech.2019.122461

PADI, R. K.; CHIMPHANGO, A. Commercial viability of integrated waste treatment in cassava starch industries for targeted resource recoveries. Journal of Cleaner Production, v. 265, p.121619, 2020b. DOI: https://doi.org/10.1016/j.jclepro.2020.121619

PADI, R. K.; CHIMPHANGO, A. Comparative sustainability assessments for integrated cassava starch wastes biorefineries. Journal of Cleaner Production, v. 290, p. 125171, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.125171.

PINGMUANGLEK, P.; JAKRAWATANA, N.; GHEEWALA, S. H. Supply chain analysis for cassava starch production: Cleaner production opportunities and benefits. Journal of Cleaner Production, v. 162, p. 1075–1084, 2017. DOI: https://doi.org/10.1016/j.jclepro.2017.06.148.

REWLAY-NGOEN, C.; PAPONG, S.; ONBHUDDHA, R.; THANOMNIM, B. Evaluation of the environmental performance of bioethanol from cassava pulp using life cycle assessment. Journal of Cleaner Production, v. 384, p. 124741, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.124741.

ROJAS, M. J.; AMARAL-FONSECA, M.; FERNANDEZ-LAFUENTE, R.; GIORDANO, R. L. C.; TARDIOLI, P. W. Recovery of starch from cassava bagasse for cyclodextrin production by sequential treatment with α-amylase and cyclodextrin glycosyltransferase. Biocatalysis Agricultural Biotechnology, v. 22, p. 101411, 2019. DOI: https://doi.org/10.1016/j.bcab.2019.101411.

SÁNCHEZ A. S., SILVA Y. L., KALID R. A., COHIM E, TORRES E. A. Waste bio-refineries for the cassava starch industry: New trends and review of alternatives. Renewable and Sustainable Energy Reviews, v. 73, p. 1265–1275, 2017. DOI: https://doi.org/10.1016/j.rser.2017.02.007.

SEAB - Secretária da Agricultura e Abastecimento. Prognóstico MANDIOCA Análise da Conjuntura 1 – Mandioca no Mundo. Avaliable at: http://www.agricultura.pr.gov.br/sites/default/arquivos_restritos/files/documento/ 2019-12/Mandioca%202020.pdf. Accessed on: 20 August 2022.

SEBRAE – Serviço Brasileiro de Apoio às Micro e Pequenas Empresas. Anuário do Trabalho na Micro e Pequena Empresa. 2003. 5 ed. Diese, São Paulo.

SOUZA, C. B.; JONATHAN, M.; SAAD, S. M. I.; SCHOLS, H. A.; VENEMA, K. Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioactive Carbohydrates and Diet Fibre, v. 16, p. 90-99, 2018. DOI: https://doi.org/10.1016/j.bcdf.2018.08.001.

TEIXEIRA, E. M.; CURVELO, A. A. S.; CORRÊA, A. C.; MARCONCINI, J. M.; GLENN. G. M.; MATTOSO, L. H. C. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, v. 37, p. 61-68, 2012. DOI: https://doi.org/10.1016/j.indcrop.2011.11.036.

TRAN, T.; DA, G.; MORENO-SANTANDER, M. A.; VÉLEZ-HERNÁNDEZ, G. A.; GIRALDO- TORO, A.; PIYACHOMKWAN, K.; SRIROTH, K. DUFOUR, D. A comparison of energy use, water use and carbon footprint of cassava starch production in Thailand, Vietnam and Colombia. Resources Conservation and Recycling, v. 100, p. 31–40, 2015. DOI: https://doi.org/10.1016/j.resconrec.2015.04.007.

TRAVALINI, A. P.; LAMSAL, B.; MAGALHÃES, W. L.; DEMIATE, I. M. Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, v. 139, p. 1151-1161, 2019. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.115.

YIN, Y.; MA, Z. NONG, G.; WANG, S. Strategies of energy management in a cassava starch plant for increasing energy and economic efficiency. Journal of Cleaner Production, v. 234, p. 1296–1305, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.06.309.

ZHANG, M.; XIE, L.; YIN, Z.; KHANAL, S.K.; ZHOU, Q. Biorefinery approach for cassava-based industrial wastes: Current status and opportunities. Bioresource Technology, v. 215, p. 50–62, 2016. DOI: https://doi.org/10.1016/j.biortech.2016.04.026

ZHU, F. Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, v. 122, p. 456–480, 2015. DOI: https://doi.org/10.1016/j.carbpol.2014.10.063.
Published
2024-07-11
Section
Tecnologias Limpas