Use of microalgae Spirulina platensis in wastewater treatment and biofuel production
DOI:
https://doi.org/10.17765/2176-9168.2025v18e13077Keywords:
Fatty acid, Biodiesel, Biomass, Bioremediation, Wastewater treatmentAbstract
This study evaluated the efficiency of microalgae Spirulina platensis in the treatment of cattle wastewater and, simultaneously, in the production of biomass for biodiesel. Cultivation in effluents, without additives, demonstrated high bioremediation efficacy, with removals of 86 to 99% of Chemical Oxygen Demand (COD), 86 to 99% of Biochemical Oxygen Demand (BOD), and 98 to 100% of Ammoniacal Nitrogen (NH??). Dry biomass volumetric productivity reached 2.018 g L?¹ day?¹ in one of the experiments, with an average of 0.846 g L?¹ day?¹ in the four scenarios tested, exceeding values ??reported in the literature for similar media. CO? biofixation reached 3401 mg L?¹ day?¹ in the highest productivity experiment. The generated biomass presented lipid contents between 6.3% and 8%, with palmitic acid (C16:0) being the majority (~47%). The biodiesel produced met several quality parameters, although the linolenic acid (C18:3) content was between 17-22%, above the 12% limit established by EN14214 standard. The treated effluent met the discharge and reuse standards of the National Environment Council (CONAMA) Resolutions No. 430/2011 and No. 357/2005, respectively, for most parameters, except for pH, which requires simple and low-cost correction. It is concluded that the cultivation of Spirulina platensis in wastewater is a viable and efficient strategy, integrating effluent treatment with sustainable biofuel production.
References
ALMOMANI, F.; JUDD, S.; BHOSALE, R. R.; SHURAIR, M.; ALJAML, K.; KHRAISHEH, M. Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process Safety and Environmental Protection, v. 124, p. 240-250, 2019.
AL-LWAYZY, S. H.; YUSAF, T.; AL-JUBOORI, R. A. Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies, v. 7, n. 3, p. 1829-1851, 2014.
BRASIL. Resolução do Conselho Nacional do Meio Ambiente - CONAMA, nº 357, de 11 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Brasília, DF: CONAMA, [2005].
BRASIL. Resolução do Conselho Nacional do Meio Ambiente - CONAMA, nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução no 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA. Brasília, DF: CONAMA, [2011].
CALIXTO, C. D.; SANTANA, J. K. S.; DE LIRA, E. B.; SASSI, P. G. P.; ROSENHAIM, R.; SASSI, C. F. C.; CONCEIÇÃO, M. M.; SASSI, R. Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. Bioresource Technology, v. 221, p. 438-446, 2016.
CARNEIRO, G. A.; SILVA J. J. R.; OLIVEIRA G. A.; PIO, F. P. B. Uso de microalgas para produção de biodiesel. Research, Society and Development, v. 7, n. 5, e1075181, 2018.
DENG, X.; GAO, K.; ADDY, M.; CHEN, P.; LI, D.; ZHANG, R.; RUAN, R. Growing Chlorella vulgaris on mixed wastewaters for biodiesel feedstock production and nutrient removal. Journal of Chemical Technology & Biotechnology, v. 93, n. 9, p. 2748-2757, 2018.
DE SOUZA, D. S.; LOMEU, A.; DE OLIVEIRA MOREIRA, O. B.; DE OLIVEIRA, MAL; DE MENDONÇA, H. V. New methods to increase microalgae biomass in anaerobic cattle wastewater and the effects on lipids production. Biomass and Bioenergy, v. 176, 106915, 2023.
DOS SANTOS, M. G. B.; DUARTE, R. L.; MACIEL, A. M.; ABREU, M.; REIS, A.; DE MENDONÇA, H. V. Microalgae biomass production for biofuels in brazilian scenario: a critical review. BioEnergy Research, v. 14, p. 23-42, 2021.
DOS SANTOS, M. G. B.; DUARTE, R. L.; MACIEL, A. M.; ABREU, M.; REIS, A.; DE MENDONÇA, H. V. Microalgae biomass production for biofuels in Brazilian scenario: a critical review. Bioenergy Research, v. 14, p. 23–42, 2020.
KUMAR, A. K; SHARMA, S.; PATEL A.; DIXIT, G.; SHAH, E. Comprehensive evaluation of microalgal based dairy effluent treatment process for clean water generation and other value-added products. International Journal of Phytoremediation, v. 21, n. 6, p. 519-530, 2019.
KUMAR, K.; MISHRA, S. K.; SHRIVASTAV, A.; PARK, M. S.; YANG, J. W. Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, v. 51, p. 875-885, 2015.
KUMAR, V. R.; NARENDRAKUMAR, G.; THYAGARAJAN, R.; MELCHIAS, G. A comparative analysis of biodiesel production and its properties from Leptolyngbya sp. BI-107 and Chlorella vulgaris under heat shock stress. Biocatalysis and Agricultural Biotechnology, v. 16, p. 502-506, 2018.
LAM, T. P.; LEE, T. M.; CHEN, C. Y.; CHANG, J. S. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresource Technology, v. 252, p. 180-187, 2018.
MEDIPALLY, S. R.; YUSOFF, F. M.; BANERJEE, S.; SHARIFF, M. Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Research International, 2015.
MENDONÇA, T. A.; DRUZIAN, J. I.; NUNES, I. L. Prospecção Tecnológica da Utilização da Spirulina platensis. Cadernos de Prospecção, v. 5, p. 44-52, 2012.
PIORRECK, M.; BAASCH, K. H.; POHL, P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry, v. 23, n. 2, p. 207-216, 1984.
PITTMAN J. K.; DEAN A. P.; OSUNDEKO, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, v. 102, n. 1, p. 17-25, 2011.
RAJASULOCHANA, P.; PREETHY, V. Comparison on efficiency of various techniques in treatment of waste and sewage water–A comprehensive review. Resource-Efficient Technologies, v. 2, n. 4, p. 175-184, 2016.
RUAN, Y.; WU, R.; LAM, J. C.; ZHANG, K.; LAM, P. K. Seasonal occurrence and fate of chiral pharmaceuticals in different sewage treatment systems in Hong Kong: Mass balance, enantiomeric profiling, and risk assessment. Water Research, v. 149, n. 607-616, 2019.
SINGH, S. P.; SINGH, P. Effect of CO2 concentration on algal growth: A review. Renewable and Sustainable Energy Reviews, v. 38, p. 172-179, 2014.
SOUZA, C. F. V.; MOREIRA, M. B.; BRANCO, A.; SANTOS, C. P. Microalgae as a source of protein for human nutrition: a review. Scientia Plena, v. 13, n. 6, p. 1-8, 2017.
TIWARI, B.; SELLAMUTHU, B.; OUARDA, Y.; DROGUI, P.; TYAGI, R. D.; BUELNA, G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, v. 224, p. 1-12, 2017.
WALLS, L. E.; VELASQUEZ-ORTA, S. B.; ROMERO-FRASCA, E; LEARY, P.; NOGUEZ, I. Y.; LEDESMA, M. T. O. Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochemical Engineering Journal, v. 151, 107319, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista em Agronegócio e Meio Ambiente

This work is licensed under a Creative Commons Attribution 4.0 International License.
A Revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com o intuito de manter o padrão culto da língua, respeitando, porém, o estilo dos autores. As opiniões emitidas pelos autores são de sua exclusiva responsabilidade.Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizado pelo periódico é a licença Creative Commons Attribution
Creative Commons Atribuição 4.0 Internacional. São permitidos o compartilhamento (cópia e distribuição do material em qualquer meio ou formato) e adaptação (remixar, transformar, e criar a partir do trabalho, mesmo para fins comerciais), desde que lhe atribuam o devido crédito pela criação original.




