Utilization of moringa cake: impact on vermicomposting and growth of Eruca sativa

Authors

DOI:

https://doi.org/10.17765/2176-9168.2025v18e13531%20

Keywords:

Eisenia foetida, Biofertilizer, Waste Management, Sustainability

Abstract

In the search for alternatives to reduce the use of synthetic fertilizers, this study aimed to evaluate the feasibility of using Moringa oleifera seed cake (MC) to enrich final vermicomposts (FVC) and substrates for the plant development (PD) of Eruca sativa (arugula). In the vermicomposting (VC) process, four MC doses (10%, 5%, 2.5%, 1%, and 0%) were tested, mixed with organic residues such as bovine manure, tree pruning waste, banana leaves, and silage residue, and processed with Eisenia foetida earthworms. After 105 days of VC, reductions were observed in pH (8.70%), volatile solids (10.91%), total organic carbon (6.06%), C/N ratio (22.51%), along with increases in electrical conductivity (8.89%), total nitrogen (0.21%), and total phosphorus (44.88%), with no phytotoxicity (germination index >80%). These results indicate residue stabilization and mineralization, although no significant differences were found between treatments. In E. sativa development, pure FVCs showed the best performance, while raw MC was most effective at a 1% dose combined with 50% washed sand. The findings confirm the potential of MC in vermicomposting and substrate enrichment, reinforcing its value as a sustainable agricultural input.

Author Biographies

Reginaldo dos Santos Araujo, Universidade Federal da Integração Latino-Americana

Doutorando no Programa de Pós-Graduação Interdisciplinar em Energia e Sustentabilidade (PPGIES) da Universidade Federal da Integração Latino Americana (UNILA). Servidor técnico Administrativo Laboratorista no Instituto Federal de Educação, Ciência e Tecnologia do Paraná (IFPR), Foz do Iguaçu (PR), Brasil.

Fernanda Rubio, Instituto Federal do Paraná

Doutora em Energia e Sustentabilidade pela Universidade Federal da Integração Latino-Americana (UNILA). Professora Permanente do Instituto Federal de Educação, Ciência e Tecnologia do Paraná (IFPR), Foz do Iguaçu (PR), Brasil.

Ana Tereza Bittencourt Guimarães, Faculdade Pequeno Príncipe

Doutora em Ecologia e Recursos Naturais pela Universidade Federal de São Carlos (UFSCAR). Professora na Associação Hospitalar de Proteção à Infância Dr. Raul Carneiro, Faculdade Pequeno Príncipe, Curitiba (PR), Brasil.

Priscila Ferri Coldebella, Centro Universitário Dinâmica das Cataratas

Doutora em Engenharia Química pela Universidade Estadual de Maringá (UEM). Professora no Centro
Universitário Dinâmica das Cataratas (UDC), Foz do Iguaçu (PR) Brasil.

Caroline Costa Silva Gonçalves, Interdisciplinary Postgraduate Program in Energy and Sustainability at the Federal University of Latin American Integration - PPGIES/UNILA

Doutora em Química pela Universidade Estadual de Campinas (UNICAMP). Professora Permanente da Pós- Graduação Interdisciplinar em Energia e Sustentabilidade da Universidade Federal da Integração Latino Americana (UNILA), Foz do Iguaçu (PR), Brasil.

References

ARORA, Jaya; RAMAWAT, K. G.; MÉRILLON, Jean-Michel. Disposal of agricultural waste and its effects on the environment, production of useful metabolites and energy: potential and challenges. In: Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production. Singapore: Springer Nature Singapore, 2023. p. 3-20. DOI: https://doi.org/10.1007/978-981-19-8774-8_1.

BERNAL, M. P.; ALBURQUERQUE, J. A.; MORAL, Raúl. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource technology, v. 100, n. 22, p. 5444-5453, 2009. DOI: https://doi.org/10.1016/j.biortech.2008.11.027.

BHUNIA, S.; Bhowmik, A.; Mallick, R.; Joydeep, M. Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy, v. 11, n. 5, p. 823, 2021. DOI: https://doi.org/10.3390/agronomy11050823.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 61, de 8 de julho de 2020. Estabelece as regras sobre definições, exigências, especificações, garantias, tolerâncias, registro, embalagem e rotulagem dos fertilizantes orgânicos e dos biofertilizantes, destinados à agricultura. Brasília, DF: Instrução Normativa SDA/MAPA 61/2020.

CHHETRI, R. K.; Aryal, N.; Kharel, S.; Poudel, R. C.; Pant, D. Agro-based industrial wastes as potent sources of alternative energy and organic fertilizers. In: Current developments in biotechnology and bioengineering. Elsevier, 2020. p. 121-136. DOI: https://doi.org/10.1016/B978-0-444-64309-4.00005-2.

COELHO, N.; PEREIRA, A. S.; TAVARES, P. Moringa oleifera Seed Cake: A Review on the Current Status of Green Nanoparticle Synthesis. Applied Biosciences, v. 3, n. 2, p. 197-212, 2024. DOI: https://doi.org/10.3390/applbiosci3020013.

COTTA, J. A. O.; Carvalho, N. L. C.; Rezende, M. O.; Brum, T. S. Compostagem versus vermicompostagem: comparação das técnicas utilizando resíduos vegetais, esterco bovino e serragem. Engenharia Sanitária e Ambiental, v. 20, n. 1, p. 65-78, 2015. DOI: https://doi.org/10.1590/S1413-41522015020000111864.

DAL BOSCO, T. C. Compostagem e vermicompostagem de resíduos sólidos: resultados de pesquisas acadêmicas. São Paulo: Ed. Edgard Blücher Ltda, 2017.

MONTEIRO, E. W. S.; Medeiros, T. D. S.; Soares, N. R. M.; Arraes, D. R. S.; Costa, M. K. V.; Ferreira, A. M. S. D.; Queiroz, G. A.; Farias, A. L. F.; Cantuária, P. C.; Almeida, S. S. M. S. Estudo fitoquímico do extrato etanólico das folhas de moringa oleifera lam. In: plantas medicinais do estado do amapá: dos relatos da população à pesquisa científica. Editora Científica Digital, p. 137-152, 2021. DOI: https://doi.org/10.37885/210504518.

DICKSON, A.; LEAF, A.; HOSNER, J. F. Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forest Chronicle, West Mattawa, v. 36, p. 10-13, 1960. DOI: https://doi.org/10.5558/tfc36010-1.

DIONÍSIO, J. A. Vermicompostagem. Clube de Autores, 2021.

DOMÍNGUEZ, J.; Aira, M.; Crandall, K. A.; Pérez-Losada. M. Earthworms drastically change fungal and bacterial communities during vermicomposting of sewage sludge. Scientific Reports, v. 11, n. 1, p. 15556, 2021. DOI: https://doi.org/10.1038/s41598-021-95099-z.

DORES-SILVA, P. R.; LANDGRAF, M. D.; REZENDE, M. O. O. Processo de estabilização de resíduos orgânicos: vermicompostagem versus compostagem. Química nova, v. 36, p. 640-645, 2013. DOI: https://doi.org/10.1590/S0100-40422013000500005.

EDWARDS, C. A.; Arancon, N. Q. Biology and ecology of earthworms. New York: Springer, 2022.

Elango, D.; Thinakaran, N.; Panneerselvam, P.; Sivanesan, S. Thermophilic composting of municipal solid waste. Applied Energy, v. 86, n. 5, p. 663-668, 2009. DOI: https://doi.org/10.1016/j.apenergy.2008.06.009.

EL-HADIDY, G. A. M.; Thanaa Sh. M. Mahmoudb, T. S.; Shaabana, F. K. M.; Hemdan, N. A. Effect of organic fertilization with Moringa oleifera seeds cake and compost on storability of valencia orange fruits. Egyptian Journal of Chemistry, v. 65, n. 2, p. 659-667, 2022. DOI: https:// 10.21608/ejchem.2021.90997.4329.

EMMANUEL, S. A.; Zaku, S. G. Moringa oleifera seed-cake, alternative biodegradable and biocompatibility organic fertilizer for modern farming. Magnesium, v. 203, p. 0-08, 2011. DOI: https://10.5251/abjna.2011.2.9.1289.1292.

Environmenal Protection Agency. A food and drug administration, organization foreconomic cooperation and developed. EPA, 2014. Disponível em: https://www.epa.gov/pesticides. Acesso em: 17 de set. 2024.

FILIPOVI?, A.; ANA MANDI?, A.; HADŽIABULI?, A.; JOHANIS, H.; STIPANOVI?, A.; BREKALO, H. Characterization and Evaluation of Vermicomposting Materials. Ekológia (Bratislava), v. 42, n. 2, p. 101-107, 2023. DOI: https:// :10.2478/eko-2023-0012.

GARG, V. K.; GUPTA, R. Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida. Ecotoxicology and environmental safety, v. 74, n. 1, p. 19-24, 2011. DOI: https://doi.org/10.1016/j.ecoenv.2010.09.015.

GHARSALLAH, K.; Leila Rezig, L.; Rajoka, M. S. R.; Hafiza Mahreen Mehwish, H. M.; Ali, M. A.; Chew, S. C. Moringa oleifera: Processing, phytochemical composition, and industrial application. South African Journal of Botany, v. 160, p. 180-193, 2023. DOI: https://doi.org/10.1016/j.sajb.2023.07.008.

GÓMEZ-BRANDÓN, M.; LORES, M.; DOMÍNGUEZ, J. Recycling and valorization of distilled grape marc through vermicomposting: a pilot-scale study. Journal of Material Cycles and Waste Management, v. 25, n. 3, p. 1509-1518, 2023. DOI: https://doi.org/10.1007/s10163-023-01627-6.

GRZYB, A.; WOLNA-MARUWKA, A.; NIEWIADOMSKA, A. The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy, v. 11, n. 7, p. 1415, 2021. DOI: https://doi.org/10.3390/agronomy11071415.

GUPTA, R.; GARG, V. K. Stabilization of primary sewage sludge during vermicomposting. Journal of hazardous materials, v. 153, n. 3, p. 1023-1030, 2008. DOI: https://doi.org/10.1016/j.jhazmat.2007.09.055.

HUANG, G. F.; Wong, J. W. C., Wu, Q. T.; Nagar, B. B. Effect of C/N on composting of pig manure with sawdust. Waste management, v. 24, n. 8, p. 805-813, 2004. DOI: https://doi.org/10.1016/j.wasman.2004.03.011.

HUSSAIN, N.; Singh, A.; Sougata Saha, S.; Kumar, M. V. S., Bhattacharyya, P.; Bhattacharya, S. S. Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria: a vermicompost based assessment with vegetable market waste and rice straw feed mixtures. Bioresource Technology, v. 222, p. 165-174, 2016. DOI: https://doi.org/10.1016/j.biortech.2016.09.115.

International Union of Pure and Applied Chemistry. IUPAC, 2013. Disponível em: http://www.iupac.org/home/about.html. Acesso em: 02 fev. 2024.

KIEHL, E. J. Fertilizantes orgânicos. Piracicaba: Editora Agronômica Ceres Ltda, 1985.

KIEHL, E. J. 500 perguntas e respostas (1aed.). Piracicaba: Agronômica Ceres Ltda, 2008.

KIEHL. E. J. Manual da compostagem: Maturação e Qualidade do Composto. 4. Ed. Piracicaba: Agronômica Ceres Ltda, 2004.

KIRAN, S. Effects of vermicompost on some morphological, physiological and biochemical parameters of lettuce (Lactuca sativa var. crispa) under drought stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, v. 47, n. 2, p. 352-358, 2019. DOI: https://doi.org/10.15835/nbha47111260.

KOCAMAN, A.; Turan, M.; Tüfenkçi, ?.; Kat?rc?o?lu, H.; Güne?, A.; K?t?r, N.; Giray, G.; Gürkan, B.; Ersoy, N.; Y?ld?r?m, E. Development of plant-friendly vermicompost using novel biotechnological methods. Journal of Material Cycles and Waste Management, v. 25, n. 5, p. DOI: 2925-2936, 2023. https://doi.org/10.1007/s10163-023-01726-4.

Lirikum, Kakati, L. N.; Thyug, L.; Mozhui, L. Vermicomposting: an eco-friendly approach for waste management and nutrient enhancement. Tropical Ecology, v. 63, n. 3, p. 325-337, 2022. DOI: https://doi.org/10.1007/s42965-021-00212-y.

MAGO, M.; Yadav, A.; Gupta, R.; Garg, V. K. Management of banana crop waste biomass using vermicomposting technology. Bioresource Technology, v. 326, p. 124742, 2021. DOI: https://doi.org/10.1016/j.biortech.2021.124742.

NOGALES, R., FERNÁNDEZ-GÓMEZ, M. J., DELGADO-MORENO, L.; Castillo-Díaz, J. M.; Romero, E. Eco-friendly vermitechnological winery waste management: a pilot-scale study. SN Appl. Sci. 2, 653 (2020). DOI: https://doi.org/10.1007/s42452-020-2455-3.

PEREIRA, M. M. A.; Moraes, L. C.; Mogollón, M. C. T.; Borja, C. J. F.; Duarte, M.; Buttrós, v. h. t.; Luz, j. m. q.; Pasqual, m.; Dória, j. Cultivating biodiversity to harvest sustainability: Vermicomposting and inoculation of microorganisms for soil preservation and resilience. Agronomy, v. 13, n. 1, p. 103, 2022. DOI: https://doi.org/10.3390/agronomy13010103.

PRAJAPATI, C.; Ankola, M.; Tarun Kumar Upadhyay, T. K.; SharangI, A. B.; Alabdallah, N. M.; Al-Saeed, F. A.; Muzammil, K.; Saeed, M. Moringa oleifera: Miracle plant with a plethora of medicinal, therapeutic, and economic importance. Horticulturae, v. 8, n. 6, p. 492, 2022. DOI: https://doi.org/10.3390/horticulturae8060492.

PRAMANIK, P.; Ghosh, G. K.; Ghosal, P. K.; Banik, P. Changes in organic–C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresource technology, v. 98, n. 13, p. 2485-2494, 2007. DOI: https://doi.org/10.1016/j.biortech.2006.09.017.

RAI, R.; SUTHAR, S. Composting of toxic weed Parthenium hysterophorus: Nutrient changes, the fate of faecal coliforms, and biopesticide property assessment. Bioresource Technology, v. 311, p. 123523, 2020. DOI: https://doi.org/10.1016/j.biortech.2020.123523.

RAZA, S. T.; Zhu Bo, Z.; Zulfiqar Ali, Z.; Liang, T. J. Vermicomposting by Eisenia fetida is a sustainable and eco-friendly technology for better nutrient recovery and organic waste management in upland areas of China. Pakistan Journal of Zoology, v. 51, n. 3, p. 1027, 2019. DOI: http://dx.doi.org/10.17582/journal.pjz/2019.51.3.1027.1034.

RUBIO, F.; Coldebella, P. F.; Boroski, M., Ana Tereza Bittencourt Guimarães, A. T. B.; Gonçalves, C. C. S. Sustainable valorization of Moringa oleifera Lam. co-products and zoo waste. Revista Brasileira de Ciências Ambientais (RBCIAMB), v. 59, p. e1816-e1816, 2024. DOI: https://doi.org/10.5327/Z2176-94781816.

SARAIVA, Bianka Rocha et al. Valorização de resíduos agroindustriais: fontes de nutrientes e compostos bioativos para a alimentação humana. Pubsaúde, v. 1, n. 1, p. 1-10, 2018. DOI: https://dx.doi.org/10.31533/pubsaude1.a007.

Sarangi, P.; Subudhi, S.; Bhatia, L.; Saha, K. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, v. 30, n. 4, p. 8526-8539, 2023. DOI: https://doi.org/10.1007/s11356-022-20669-1.

SEGURA-CASTRUITA, M. A.; Valdivia-Dávila, M. A.; Yescas-Coronado, P.; Gómez-Leyva, J. F.; Cueto-Medina, S. Influence of Vermicompost on the Concentration of Exogenous Indole-3-Acetic Acid and Its Effect on the Development of Tomato Plants (Lycopersicum esculentum L.). Agronomy, v. 14, n. 6, p. 1311, 2024. DOI: https://doi.org/10.3390/agronomy14061311.

SILVA, J. D. C.; Leal, T. T. B.; Araújo; R. M.; Gomes, R. L. F.; Araújo, A. S. F.; Melo, W. J. Emergência e crescimento inicial de plântulas de pimenta ornamental e celosia em substrato à base de composto de lodo de curtume. Ciência Rural, v. 41, p. 412-417, 2011. DOI: https://doi.org/10.1590/s0103-84782011000300008.

SHARMA, K.; GARG, V. K. Recycling of lignocellulosic waste as vermicompost using earthworm Eisenia fetida. Environmental Science and Pollution Research, v. 26, p. 14024-14035, 2019. DOI: https://doi.org/10.1007/s11356-019-04639-8.

SUTHAR, S. Bioremediation of aerobically treated distillery sludge mixed with cow dung by using an epigeic earthworm Eisenia fetida. The Environmentalist, v. 28, n. 2, p. 76-84, 2008. DOI: https://doi.org/10.1007/s10669-007-9031-x.

TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análises de solo, planta e outros materiais. 2. Ed. Porto Alegre: UFRGS, 1995. 174p.

TEIXEIRA, P. C. DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de métodos de análise de solo. 2017.

THAMIZHARASAN, A.; AISHWARYA, M.; GAJALAKSHMI, S. Utilizing leaf litter of Azadirachta indica for generation of microbial enriched vermicompost. Bioresource Technology Reports, v. 26, p. 101839, 2024. DOI: https://doi.org/10.1016/j.biteb.2024.101839.

TRAUTMANN, N. M.; KRASNY, M. E. Composting in the classroom: Scientific inquiry for high school students. Kendall/Hunt Publishing Company, 1998.

TRIPATHI, G.; BHARDWAJ, P. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresource technology, v. 92, n. 3, p. 275-283, 2004. DOI: https://doi.org/10.1016/j.biortech.2003.09.005.

TURP, G. A.; Ozdemir, S.; Yetilmezsoy, K.; Oz, N.; Elkamel, A. Role of vermicomposting microorganisms in the conversion of biomass ash to bio-based fertilizers. Sustainability, v. 15, n. 11, p. 8984, 2023. DOI: https://doi.org/10.3390/su15118984.

VELMURUGAN, K.; ANNAMALAI, V. First report on toddy palm shell-based vermicompost by Eisenia fetida. International Journal of Environmental Science and Technology, v. 20, n. 10, p. 11061-11074, 2023. DOI: https://doi.org/10.1007/s13762-022-04597-8.

ZAYED, O.; Hewedy, O. A.; Abdelmoteleb, A.; Ali, M.; Youssef, M. S.; Roumia, A. F.; Seymour, D.; Yuan, Z-C. Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomolecules, v. 13, n. 10, p. 1443, 2023. DOI: https://doi.org/10.3390/biom13101443.

ZUCCONI, F. Evaluating toxicity of immature compost. Biocycle, p. 54-57, 1981.

Published

2025-12-30

How to Cite

Araujo, R. dos S., Rubio, F., Guimarães, A. T. B., Coldebella, P. F., & Gonçalves, C. C. S. (2025). Utilization of moringa cake: impact on vermicomposting and growth of Eruca sativa. Revista Em Agronegócio E Meio Ambiente, 18, e13531 . https://doi.org/10.17765/2176-9168.2025v18e13531

Issue

Section

MEIO AMBIENTE e TECNOLOGIA LIMPAS