Phytoremediation potential of Canavalia ensiformis in copper- and zinc-contaminated soil

Authors

Keywords:

Bioaccumulation factor, Heavy metals, Jack–bean, Phytoextraction

Abstract

Soil contamination by heavy metals, such as Cu (copper) and Zinc (Zn), is an agro-environmental and socioeconomic problem, resulting from human action on the soil-plant system. The present work aimed to evaluate the phytoremediation potential of C. ensiformis, in relation to the potentially toxic metals Cu and Zn at increasing doses in the soil. The experiment was carried out in a greenhouse, in a completely randomized design. The soil was treated with five doses of copper and zinc equivalent to (0, 10, 20, 40 and 80 mg kg-1) with four replications, totaling forty experimental units. Morphometric data (height, stem diameter and number of leaves), dry biomass, Cu and Zn contents in shoots and roots were collected. Mehlich-1 extractor was used to determine the metals, samples were analyzed by absorption spectrometry atomic with flame atomization, the calculation of Bioaccumulation Factor (FB), Translocation Factor (FT) was performed. Data were submitted to analysis of variance and regression (p<0.05). The jack bean has potential for phytoextraction, as it showed translocation of high concentrations of copper and zinc to aerial tissues, the highest concentrations of metals were obtained in the aerial part of cultivated plants, and ranged from 14.13 mg kg-1 (Cu) to 9.36 mg kg-1 (Zn). The species showed a tolerance index >70% for both metals. The results showed that C. ensiformis was efficient in the phytoremediation of the evaluated metals, with the translocation process being progressive in the treatment that presented the highest metal content.

Author Biographies

Rayane Reis Sousa, Universidade Estadual do Maranhão

Doctoral student at the Postgraduate Program in Plant Production (PG-PV) at the Federal University of Tocantins – UFT, Gurupi (TO), Brazil. Master by the Graduate Program in Agriculture and Environment (PPGAA) of the State University of Maranhão-UEMA, Balsas (MA), Brazil.

Tiago Massi Ferraz , UNIVERSIDADE ESTADUAL DO MARANHÃO

Pós-doc (PNPD) no Programa de Pós-graduação em Agroecologia (PPGA) da Universidade Estadual do Maranhão (UEMA). Doutora em Agronomia pela Universidade Federal de Goiás (UFG). Brasil.

Jorge Diniz de Oliveira, UNIVERSIDADE ESTADUAL DO MARANHÃO

Graduated in Industrial Chemistry from the Federal University of Maranhão UFMA (1978) and in an Emergency Full Scheme I Licentiate Course from the Center for Higher Studies of Imperatriz-CESI/UEMA (1995). Master's Degree in Inorganic Chemistry from the Federal University of Ceará (1998) and Doctorate in Chemistry from the Universidade Estadual Paulista Júlio de Mesquita Filho-UNESP-Araraquara-SP (2006) (Flame Atomic Spectrometry (FAAS). Tocantina Region of Maranhão teaching the subjects Chemistry of Coordination Compounds and Environmental Chemistry.

Ivaneide de Oliveira Nascimento , UNIVERSIDADE ESTADUAL DO MARANHÃO

Professora Adjunto II da Universidade Estadual da Região Tocantina do Maranhão (UEMASUL). Doutora em Agroecologia pela Universidade Estadual do Maranhão (UEMA). Brasil.

Fabrício de Oliveira Reis , UNIVERSIDADE ESTADUAL DO MARANHÃO

Graduated in Agronomy from the Federal Rural University of Rio de Janeiro (1995-1999), Master's in Plant Production from the State University of Norte Fluminense Darcy Ribeiro (2001-2003) and Doctorate in Plant Production from the State University of Norte Fluminense Darcy Ribeiro (2003) -2007). Post-Doctorate in Post-harvest at the Federal University of Espírito Santo (2007-2009). He is currently Adjunct Professor IV at the State University of Maranhão.

Niedja Bezerra Costa, UNIVERSIDADE FEDERAL DO TOCANTINS

Doctoral student at the Postgraduate Program in Plant Production (PG-PV) at the Federal University of Tocantins – UFT, Gurupi (TO), Brazil. Master in the Graduate Program in Agroenergy (PPGA) at the Federal University of Tocantins – UFT, Palmas (TO), Brazil.

References

ANTONIADIS, V.; GOLIA, E. E.; LIU, Y. T.; WANG, S. L.; SHAHEEN, S. M.; RINKLEBE, J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environment international, v. 124, p. 79-88, 2019. DOI:<doi: 10.1016/j.envint.2018.12.053>.

ARUMUGAM, G.; RAJENDRAN, R.; GANESAN, A.; SETHU, R. Bioaccumulation and translocation of heavy metals in mangrove rhizosphere sediments to tissues of Avicenia marina – A field study from tropical mangrove forest. Environmental Nanotechnology, Monitoring and Management, v. 10, p. 272–279. 2018. DOI: <http://dx.doi.org/10.1155/2020/8010376>.

ASHRAF, S.; ALI, Q.; ZAHIR, Z. A.; ASHRAF, S.; ASGHAR, H. N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and environmental safety, v. 174, p. 714-727, 2019. DOI:<10.1016/j.ecoenv.2019.02.068>.

BAI, L.; LIU, X. L.; HU, J., LI, J., WANG, Z. L., HAN, G., LI, S. L.; LIU, C. Q. Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. International Journal of Environmental Research and Public Health, v. 15, n.12, p.2857, 2018. DOI: <https://dx.doi.org/10.3390%2Fijerph15122857>.

BANZATTO, D. A.; KRONKA, S. N. Experimentação agrícola. 4.ed. Jaboticabal: Funep, 2006. 237 p. Disponível em: <https://www.docsity.com/pt/experimentacao-agricola-banzatto-e-kronka/4911710/>; Acesso em: 22 de jan. 2022.

BELO, A. F.; PIRES, F. R.; BONOMO, R.; CARGNELUTTI FILHO, A.; TENIS, L. H. O Sulfentrazone phytoremediation under field conditions. Revista Caatinga, v. 29, n. 1, p. 119-126, 2016. DOI: <http://dx.doi.org/10.1590/1983-21252016v29n114rc>.

CHANDRASEKHAR, C.; RAY, J. G. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicology and Environmental Safety, v. 171, p. 26–36. 2019. DOI: <doi: 10.1016/j.ecoenv.2018.12.058.>

DE MARCO, R. R.; SILVA, R. F. D.; SCHEID, D. L.; ROS, C. O. D.; SILVA, V. R. D. Amenizante Orgânico e Eucalyptus grandis para fitoestabilização de solo contaminado com cobre. Floresta e Ambiente, v. 24, 2017. DOI:<https://doi.org/10.1590/2179-8087.029315>.

FERRAÇO, M.; PIRES, F. R.; BELO, A. F.; CELIN FILHO, A.; BONOMO, R. Effect of population density of Canavalia ensiformis on the phytoremediation of soil contaminated with sulfentrazone. Revista Ciência Agronômica, v.48, n.1, p.32-40, 2017. DOI: http://doi.org/10.5935/1806-6690.20170004

FERREIRA, D. F. Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, [s. l.], v. 37, n. 4, p. 529-535, 2019. Disponível em: <https://biometria.ufla.br/index.php/BBJ/article/view/450>. Acesso em: 22 de Jan. de 2022.
GONZAGA, M. I. S.; MATIAS, M. I. D. A. S.; ANDRADE, K. R.; JESUS, A. N.; CUNHA, G. C.; ANDRADE, R. S.; SANTOS, J. C. J. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Chemosphere, v. 240, p. 124828, 2020. DOI: <10.1016/j.chemosphere.2019.124828>.
HUANG, R. Z.; JIANG, Y. B.; JIA, C. H.; JIANG, S. M.; YAN, X. P. Subcellular distribution and chemical forms of cadmium in Morus alba L. International Journal of Phytoremediation, v,20, n.5, p.448–453, 2018. DOI: <10.1080/15226514.2017.1365344>.
HUSSAIN, F.; HUSSAIN, I.; KHAN, A. H. A.; MUHAMMAD, Y. S.; IQBAL, M.; SOJA, G.; REICHENAUER, T. G.; ZESHAN, YOUSAF, S. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, v.153, p.80–88, 2018. DOI:<https://doi.org/10.1016/j.envexpbot.2018.05.012>.
HOU, J.; WANG, Q.; LIU, W.; ZHONG, D.; GE, Y.; CHRISTIE, P.; LUO, Y. Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil. Science of The Total Environment, v.792, p.148-411, 2021. DOI: <https://doi.org/10.1016/j.scitotenv.2021.148411>.
LI, L.; ZHANG, K.; GILL, R. A.; ISLAM, F.; FAROOQ, M. A.; WANG, J.; ZHOU, W. Ecotoxicological and Interactive Effects of Copper and Chromium on Physiochemical, Ultrastructural, and Molecular Profiling in Brassica napus L. BioMed research international, [s. l.], v. 2018, p. 924-8123, 2018. DOI: <https://doi.org/10.1155/2018/9248123>.
LIU, J.; LI, N.; ZHANG, W.; WEI, X.; TSANG, D. C.; SUN, Y.; LUO, X.; BAO, Z.; ZHENG, W.; WANG, J.; XU, G.; HOU, L.; CHEN, Y.; FENG, Y. Thallium contamination in farmlands and common vegetables in a pyrite-mining city and potential health risks. Environmental Pollution, v.248, p.906-915, 2019. DOI: <https://doi.org/10.1016/j.envpol.2019.02.092>.
LUX, A.; ŠOTTNÍKOVÁ, A.; OPATRNÁ, J.; GREGER, M. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia plantarum, v. 120, n. 4, p. 537-545, 2004. DOI: <https://doi.org/10.1111/j.0031-9317.2004.0275.x>.
MADALÃO, J. C.; SOUZA, M. F. D.; SILVA, A. A.; SILVA, D. V.; JAKELAITIS, A.; PEREIRA, G. A. M. Action of Canavalia ensiformis in remediation of contaminated soil with sulfentrazone. Bragantia, v. 76, n. 2, p. 292-299, 2017. DOI: <http://doi.org/10.1590/1678-4499.526>.
MENEGAES, J. F.; SWAROWSKY, A.; BELLÉ, R. A.; BACKES, F. A. A. L. Avaliação do potencial fitorremediador de cravina-chinesa cultivada em solo com excesso de cobre. Revista em Agronegócio e Meio Ambiente, v. 12, n.4, p. 1353-1370, 2019. DOI: <DOI:10.17765/2176-9168.2019v12n4p1353-1370>.
OLIVEIRA, O. M. C.; QUEIROZ, A. F. S.; CERQUEIRA, J. R.; SOARES, S. A R.; GARCIA, K. S.; FILHO, A. P.; ROSA, M. L. S.; SUZART, C. M., PINHEIRO, L. L.; MOREIRA, I. T. A. Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Marine Pollution Bulletin, v. 160, p. 111-597, 2020. DOI: <https://doi.org/10.1016/j.marpolbul.2020.111597>.
PATEK-MOHD, N.-N.; ABDU, A.; JUSOP, S.; ABDUL-HAMID, H.; KARIM, M. R.; NAZRIN, M.; AKBAR, M.-H.; JAMALUDDIN, A. S. Potentiality of Melastoma malabathricum as Phytoremediators of Soil Contaminated with Sewage Sludge. Sci. Agric. (Piracicaba, Braz.). v.75, p.27–35, 2018. DOI: <10.1590/1678-992x-2016-0002>.
REHMAN, M.; LIU, L.; WANG, Q.; SALEEM, M. H.; BASHIR, S.; ULLAH, S.; PENG, D. Copper environmental toxicology, recent advances, and future outlook: a review. Environmental science and pollution research international, [s. l.], v. 26, n. 18, p. 18003-18016, 2019. DOI: <10.1007/s11356-019-05073-6>.
SALEEM, M. H.; FAHAD, S.; KHAN, S. U.; DIN, M.; ULLAH, A.; SABAGH, A. E.; LIU, L. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environmental Science and Pollution Research, v.27, n.5, p.5211-5221, 2020. DOI: <10.1007/s11356-019-07264-7>.
STELIGA, T.; KLUK, D. Application of Festuca arundinaceain phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicology and Environmental Safety, v. 194, p.110-409, 2020. DOI: <https://doi.org/10.1016/j.ecoenv.2020.110409>.
SU, C.; JIANG, Y; LI, F; YANG, Y; LU, Q.; ZHANG, T.; HU, D.; XU, Q. Investigation of subcellular distribution, physiological and biochemical changes in Spirodela polyrhiza as a function of cadmium exposure. Environmental and Experimental Botany, v.142, p. 24–33. 2017. DOI: <10.1016/j.envexpbot.2017.07.015>.
TAIZ, L.; ZEIGER, E.; MOLLER, I.; MURPHY, A. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, 2017. 888 p.
TAVARES, S. R. L. OLIVEIRA, S. A. SALGADO, C. M. Avaliação de espécies vegetais na Fitorremediação de solos contaminados por metais pesados. Holos, v.5, p.80-97. 2013. Disponível em: https://www.redalyc.org/pdf/4815/481548607008.pdf. Acesso em: 22 de jan. de 2022.
VASCONCELO, S. M. A.; JAKELAITIS, A.; PEREIRA, L. S.; OLIVEIRA, G. S.; SOUSA, G. D.; LIMA, S. F. Selection of tolerant species to imazapic for potential use in phytoremediation. Revista Brasileira de Ciências Agrarias, v.15, n.2, 2020. DOI: <http://doi.org/10.5039/agraria.v15i2a8075>.
VERÂNE, J.; SANTOS, N.; SILVA, V.; ALMEIDA, M.; OLIVEIRA, O.; MOREIRA, I. Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Marine Pollution Bulletin, v.160, p.111-687, 2020. DOI: <https://doi.org/10.1016/j.marpolbul.2020.111687>
WANG, B.; XIE, H. L.; REN, H. Y.; LI, X.; CHEN, L.; WU, B. C. Application of AHP, TOPSIS, and TFNs to plant selection for phytoremediation of petroleum-contaminated soils in shale gas and oil fields. Journal of Cleaner Production, v.233, p.13–22, 2019. DOI: <https://doi.org/10.1016/j.jclepro.2019.05.301>.
ZHOU, Y.; ZHOU, B.; PACHE, L.; CHANG, M.; KHODABAKHSHI, A. H.; TANASEICHUK, O.; CHANDA, S. K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature communications, v. 10, n. 1, p. 1-10, 2019. <https://www.nature.com/articles/s41467-019-09234-6>. Acesso em: 22 de jan. de 2022.

Published

2024-07-12

How to Cite

Reis Sousa, R., Massi Ferraz , T. ., Diniz de Oliveira, J., de Oliveira Nascimento , I., de Oliveira Reis , F., & Costa, N. B. . (2024). Phytoremediation potential of Canavalia ensiformis in copper- and zinc-contaminated soil. Revista Em Agronegócio E Meio Ambiente, 17(2), e11022. Retrieved from https://periodicos.unicesumar.edu.br/index.php/rama/article/view/11022

Issue

Section

Environment