Carbon footprint associated with the production of cakes

Authors

DOI:

https://doi.org/10.17765/2176-9168.2020v13n3p1185-1200

Keywords:

Life Cycle Assessment, Food industry, Sustainability

Abstract

The food we eat also has different climatic impacts, and the food carbon footprint comprises the amount of greenhouse gases that are emitted in the stages of cultivation, processing, packaging and transportation of food products. Thus, choosing one nutrient over another affects not only our health but also the environment. The objective of this study is to calculate the carbon footprint associated with two cake flavors, English pound cake and carrot cake, using the Life Assessment (LCA) methodology. For the production of cakes, the ingredients and consumption of energy (electricity and butane gas for cooking) and water were accounted for, along with packaging and transportation to points-of-sale. The carbon footprint for one English pound cake was 0.91 kg CO2-eq (0,81x10-3 kg CO2-eq/kcal) and for a carrot cake, 1.52 kg CO2-eq (1,42x10-3 kg CO2-eq/kcal). Eggs were responsible for the highest share of the carbon footprint. The substitution of eggs by another ingredient with the same function, both nutritional and structural, can be the subject of future studies.

Author Biographies

Monica Carvalho, Universidade Federal da Paraíba - UFPB

Doutora em Engenharia Mecânica pela Universidad de Zaragoza. Docente no Programa de Pós-Graduação em Energias Renováveis – CEAR - UFPB, João Pessoa (PB), Brasil.

Ana Lyvia Tabosa da Silva, Universidade Federal da Paraíba - UFPB

Mestranda no Programa Internacional de Pós-Graduação em Economia Circular. Leiden University e Delft University of Technology, Holanda.

Daniel de Paula Diniz, Universidade Federal da Paraíba - UFPB

Doutorando no Programa de Pós-Graduação em Engenharia Mecânica (PPGEM). Universidade Federal da Paraíba - UFPB, João Pessoa (PB), Brasil.

Alexandre Magno Vieira Gonçalves de Brito, Universidade Federal da Paraíba - UFPB

Mestrando no Programa de Pós-Graduação em Engenharia Mecânica (PPGEM). Universidade Federal da Paraíba - UFPB, João Pessoa (PB, Brasil.

Rommel de Santana Freire, Universidade Federal da Paraíba - UFPB

Doutor em Administração pela Universidade Federal de Pernambuco (UFPE). Docente no Programa de Pós-Graduação em Administração (PROPADM) - UFPB, João Pessoa (PB), Brasil.

References

ABRAHAO, R.; CARVALHO, M. Environmental Impacts of the Red Ceramics Industry in Northeast Brazil. International Journal of Emerging Research in Management and Technolog y, v. 6, p. 310, 2018.

AGRI-FOOTPRINT. Products included in Agri-footprint. 2016. Disponível em: http://www.agri-footprint.com/assets/ListofproductsinAgri-footprint.pdf. Acesso em: 17 jul. 2019.

ANDERSSON, K.; OHLSSON, T. Life cycle assessment of bread produced on different scales. The International Journal of Life Cycle Assessment, v. 4, n. 1, p. 25-40, 1999.

ARAÚJO, Y. R. V.; DE GÓIS, M. L.; COELHO JUNIOR, L. M.; CARVALHO, M. Carbon footprint associated with four disposal scenarios for urban pruning waste. Environmental Science and Pollution Research, v. 25, n. 2, p. 1863-1868, 2018.

ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE PANIFICAÇÃO E CONFEITARIA. Indicadores da panificação e confeitaria .2018. Disponível em: http://www.agenciazaga.com/INDICADORES-DA-PANIFICA%C3%87%C3%83O-E-CONFEITARIA%20BRASILEIRA%202018.pdf. Acesso em: 17 jul. 2019.

ASSOCIAÇÃO BRASILEIRA DAS INDÚSTRIAS DE BISCOITOS, MASSAS ALIMENTÍCIAS E PÃES & BOLOS INDUSTRIALIZADOS. Estatísticas Pães e Bolos, Nacional. 2018. Disponível em: http://www.abimapi.com.br/estatistica-paes-bolos.php. Acesso em: 17 jul. 2019.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Gestão Ambiental - Avaliação do Ciclo de Vida - Princípios e estrutura: NBR ISO 14040, Rio de Janeiro: ABNT, 2009 - versão corrigida 2014a.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Gestão ambiental - Avaliação do ciclo de vida - Requisitos e orientações: NBR ISO 14044, Rio de Janeiro: ABNT, 2009 - versão corrigida 2014b.

BALDWIN, C.; WILBERFORCE, N.; AMIT, K. Restaurant and food service life cycle assessment and development of a sustainability standard. The International Journal of Life Cycle Assessment, v. 16, n. 1, p. 40-49, 2011.

BEN; JERRY’S. A life cycle analysis study of some of our flavors. 2016 Disponível em: http://www.benjerry.com/values/issues-we-care-about/climate-justice/life-cycle-analysis. Acesso em: 17 jul. 2019.

BEZERRA, I. N.; SOUZA, A. D. M.; PEREIRA, R. A.; SICHIERI, R. Consumo de ali¬mentos fora do domicílio no Brasil. Revista de Saúde Pública, v. 47, p. 200s-211s, 2013.

BRASCHKAT, J.; PATYK, A.; QUIRIN, M.; REINHARDT, G. A. Life cycle assessment of bread production-a comparison of eight different scenarios. DIAS report, 2004.

CAMPOS, S.; WEINSCHUTZ, R.; CHERUBINI, E.; MATHIAS, A. L. Avaliação comparativa da pegada de carbono de margarina e manteiga produzidas no Sul do Brasil. Eng. Sanit. Ambient., Rio de Janeiro, v. 24, n. 1, jan./feb. 2019.

CARVALHO, M.; GRILO, M. M. D. S.; ABRAHAO, R. Comparison of greenhouse gas emissions relative to two frying processes for homemade potato chips. Environmental Progress & Sustainable Energ y, v. 37, n. 1, p. 481-487, 2018.

CARVALHO, M.; SEGUNDO, V. B. D. S.; DE MEDEIROS, M. G.; DOS SANTOS, N. A.; COELHO JUNIOR, L. M. Carbon footprint of the generation of bioelectricity from sugarcane bagasse in a sugar and ethanol industry. International Journal of Global Warming, v. 17, n. 3, p. 235-251, 2019.

CARVALHO, M.; MENEZES, V. L.; GOMES, K. C.; PINHEIRO , R. Carbon footprint associated with a mono‐Si cell photovoltaic ceramic roof tile system. Environmen¬tal Progress & Sustainable Energ y, 2019. DOI: 10.1002/ep.13120,

CARVALHO, M.; DE SANTANA FREIRE, R.; DE BRITO, A. M. V. G. Promotion of sustainability by quantifying and reducing the carbon footprint: new practices for organizations. In: ENERGY, transportation and global warming. Springer, Cham, 2016. p. 61-72.

ECOINVENT CENTRE. The ecoinvent Database. 2016. Disponível em: http://www.ecoinvent.org/database/database.html. Acesso em: 17 jul. 2019.

ESPINOZA-ORIAS, N.; STICHNOTHE, A. A. The carbon footprint of bread. The International Journal of Life Cycle Assessment, v. 16, n. 4, p. 351-365, 2011.

ESU-SERVICES. Life cycle assessment of Swiss chocolate. 2016. Disponível em: http://www.esu-services.ch/fileadmin/download/jungbluth-2014-SETAC-chocolate.pdf. Acesso em: 17 jul. 2019.

FONSECA, A. B.; SOUZA, T. S. N. D.; FROZI, D. S.; PEREIRA, R. A. Modernidade alimentar e consumo de alimentos: contribuições sócio-antropológicas para a pes¬quisa em nutrição. Ciência & Saúde Coletiva, v. 16, p. 3853-3862, 2011.

FREIRE, R. S.; CARVALHO, M.; DE MONTREUIL CARMONA, C. U.; DE BRITO, A. M. V. G. Perspectives on the implementation of climate change public policies in Brazil. In: ENERGY, Transportation and Global Warming. Springer, Cham, 2016. p. 13-20.

GRILO, M. M. S.; FORTES, A. F. C.; DE SOUZA, R. P. G.; SILVA, J. A. M.; CARVALHO, M. Carbon footprints for the supply of electricity to a heat pump: Solar energy vs. electric grid. Journal of Renewable and Sustainable Energ y, v. 10, n. 2, p. 023701, 2018.

GUINÉE, J. B. (ed.). Life Cycle Assessment: An operational guide to the ISO Standards. LCA in Perspective; Guide; Operational Annex to Guide. Centre for Environmental Science, Leiden University, The Netherlands, 2001.

IPCC - INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Revised supplementary methods and good practice guidance arising from the Kyoto protocol. 2013. Disponível em: http://www.ipcc-nggip.iges.or.jp/public/kpsg/. Acesso em: 17 jul. 2019.

ISO 14040. Environmental management: Life cycle assessment - Principles and framework. International Organization for Standardization (ISO), Genebra, 2006.

ISO 14044. Environmental management: Life cycle assessment - Requirements and guidelines. International Organization for Standardization (ISO), Genebra, 2006.

KONSTANTAS, A.; STAMFORD, L.; AZAPAGIC, A. Evaluating the environmental sus¬tainability of cakes. Sustainable Production and Consumption, v. 19, p. 169-180, 2019.

KULAK, M.; NEMECEK, T.; FROSSARD, E.; CHABLE, V.; GAILLARD, G. Life cycle assessment of bread from several alternative food networks in Europe. Journal of Cleaner Production, v. 90, p. 104-113, 2015.

LEVY-COSTA, R. B.; SICHIERI, R.; PONTES, N. D. S.; MONTEIRO, C. A. Disponibilidade domiciliar de alimentos no Brasil: distribuição e evolução (1974-2003). Revista de Saúde Pública, v. 39, p. 530-540, 2005.

MELQUÍADES, T. F.; CARVALHO, M.; ARAÚJO, Y. R. V.; COELHO JUNIOR, L. M. Pegada de carbono associada ao processo de pasteurização de sorvetes. Revista em Agronegócio e Meio Ambiente, v. 12, n. 2, p. 609-629, 2019.MENEZES, H. A. F.; CARVALHO, M.; FREIRE, R. S. Identificação de boas práticas para implementação da análise do ciclo de vida na Paraíba. In: CONGRESSO IN¬TERNACIONAL DE BIOENERGIA, 10. Anais [...]. FEA-USP, Brasil, 2015.

NEVES, T. I.; UYEDA, C. A.; CARVALHO, M.; ABRAHÃO, R. Environmental evaluation of the life cycle of elephant grass fertilization - Cenchrus purpureus (Schumach.) Morrone-using chemical fertilization and biosolids. Environmental monitoring and assessment, v. 190, n. 1, p. 30, 2018.

NILSSON, K.; SUND, V.; FLORÉN, B. The environmental impact of consumption of sweets, crisps and soft drinks. Tema Nord, 2011.

NOTARNICOLA, B.; TASSIELLI, G.; RENZULLI, P. A.; MONFORTI, F. Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (Life Cycle Assessment) approach. Journal of cleaner production, v. 140, p. 455-469, 2017.

NOYA, L. I.; VASILAKI, V.; STOJCESKA, V.; GONZALEZ-GARCÍA, S.; KLEYNHANS, C.; TASSOU, S.; KATSOU, E. An environmental evaluation of food supply chain using life cycle assessment: A case study on gluten free biscuit products. Journal of Cleaner Production, v. 170, p. 451-461, 2018.

ROUSSEAU, S.; VRANKEN, L. Green Market expansion by reducing information asymmetries: Evidence for labeled organic food products. Food Policy, v. 40, n. 1, p. 31-43, 2013.

SAARINEN, M.; KURPPA, S.; VIRTANEN, Y.; USVA, K.; MÄKELÄ, J.; NISSINEN, A. Life cycle assessment approach to the impact of home-made, ready-to-eat school lunches on climate and eutrophication. Journal of Cleaner Production, v. 28, p. 177-186, 2012.

SCARBOROUGH, P.; APPLEBY, P. N.; MIZDRAK, A.; BRIGGS, A. D.; TRAVIS, R. C.; BRADBURY, K. E.; KEY, T. J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Climatic change, v. 125, n. 2, p. 179- 192, 2014.

SIMAPRO. Database. Manual: methods library. [s.l.; s.n.], 2017.

SP TECHNICAL RESEARCH INSTITURE OF SWEDEN. Life cycle assessment of food products. 2016. Disponível em: https://www.sp.se/en/index/services/life-cycle/Sidor/default.aspx. Acesso em: 17 jul. 2019.

UPHAM, P.; DENDLER, L.; BLEDA, M. Carbon labelling of grocery products: public perceptions and potential emissions reductions. Journal of Cleaner Production, v. 19, n. 4, p. 348-355, 2011.

VÁZQUEZ-ROWE, R.; VILLANUEVA-REY, P.; MOREIRA, M. T.; FEIJOO, G. Opportunities and challenges of implementing life cycle assessment in seafood certification: a case study for Spain. The International Journal of Life Cycle Assessment, v. 21, p. 451-464, 2016.

ZHAO, R.; ZHONG, S. Carbon labelling influences on consumers’ behaviour: A system dynamics approach. Ecological indicators, v. 51, p. 98-106, 2015.

Published

2020-08-14

How to Cite

Carvalho, M., Silva, A. L. T. da ., Diniz, D. de P., Brito, A. M. V. G. de, & Freire, R. de S. (2020). Carbon footprint associated with the production of cakes. Revista Em Agronegócio E Meio Ambiente, 13(3), 1185–1200. https://doi.org/10.17765/2176-9168.2020v13n3p1185-1200

Issue

Section

Tecnologias Limpas