Assessment of chromium bio-accumulation potential in sunflowers

Keywords: Helianthus annus L., Phytoextractor, Heavy metals

Abstract

Plant-based remediation (phyto-remediation) is a biotechnological tool used for the decontamination of polluted soils and water bodies, even by metals. Bioaccumulation in sunflower (Helianthus annus L.) grown in soil contaminated by metallic chromium (Cr) is studied. The sunflower is one of the best hyperaccumulators for phyto-remediation sites polluted by metals. The accumulation of Cr in shoot biomass content and oil extracted from seeds of plants grown in soil contaminated by the metal were analyzed. The sunflower plants were grown in pots and treatments comprised potassium dichromate solutions (K2Cr2O7) at concentrations 0, 18, 36 and 72 mg kg-1, whilst analyses were performed by atomic absorption spectrometry. Results showed that there was a significant reduction in plant biomass of plants in proportion to Cr dose, accumulating high percentages of metal in shoot plant tissues. It was toxic at the highest concentration (72 mg kg-1), whereas metal rates were the same at different concentrations of Cr in the soil, in oil. Sunflower plants have a Cr phytoextractor potential when cultivated in soil contaminated by the metal. Oil extracted from the seeds grown under these conditions is not suitable for human consumption due to its high metal content rates.

Author Biographies

Sérgio Costa, Universidade do Oeste Paulista - UNOESTE
Markio Gonçalves Vicente, Universidade do Oeste Paulista - UNOESTE
Egresso do curso de Química da Universidade do Oeste Paulista (UNOESTE), Presidente Prudente (SP), Brasil.
Vinicius Gomes, Universidade do Oeste Paulista - UNOESTE
Docente do curso de Química da Universidade do Oeste Paulista (UNOESTE), Presidente Prudente (SP), Brasil.
Alba Regina Azevedo Arana, Universidade do Oeste Paulista - UNOESTE
Docente permanente do Programa de Pós-graduação em Meio Ambiente e Desenvolvimento Regional da Universidade do Oeste Paulista (UNOESTE), Presidente Prudente (SP), Brasil.
Maíra Uliana, Universidade do Oeste Paulista - UNOESTE
Docente permanente do Programa de Pós-graduação em Meio Ambiente e Desenvolvimento Regional da Universidade do Oeste Paulista (UNOESTE), Presidente Prudente (SP), Brasil.

References

ANVISA. Decreto nº 55871, de 26 de março de 1965. Disponível em: http://www.anvisa.gov.br/legis/decretos/55871_65.htm. Acesso em: 21 ago. 2019.

AMORIM, F. A. C.; LIMA, D. C.; AMARO, J. A.; VALE, M. G. R.; FERREIRA, S. L. Methods for vanadium determination in fuel oil by GF AAS with microemulsification and acid digestion sampling. Journal of the Brazilian Chemical Society, v. 18, n. 8, p. 1566-1570, 2007.

BRASIL. Métodos físico-quimicos para análise de alimentos. 4ª ed. Brasília: Ministério da Saúde, 2008. 1020p.

CHAUHAN, P.; MATHUR, J. Potential of Helianthus annuus for phytoremediation of multiple pollutants in the environment: A Review. Journal of Biological Sciences and Medicine, v. 4, n. 3, p. 5-16, 2018.

CHEN, M.; XU, P.; ZENG, G.; YANG, C.; HUANG, D.; ZHANG, J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnology advances, v. 33, n. 6, p. 745-755, 2015.

DE, D.; SANTOSHA, S.; ANIYA, V.; SREERAMOJU, A.; SATYAVATHI, B. Assessing the applicability of an agro-industrial waste to Engineered Bio-char as a dynamic adsorbent for Fluoride Sorption. Journal of Environmental Chemical Engineering, v. 6, n. 2, p. 2998-3009, 2018.

EBBS, S. D.; LASAT, M. M.; BRADY, D. J.; CORNISH, J.; GORDON, R.; KOCHIAN, L. V. Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, v. 26, n. 5, p. 1424-1430, 1997.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2ª ed. Rio de Janeiro, 1997.

FORTE, J.; MUTITI, S. Phytoremediation potential of Helianthus annuus and Hydrangea paniculata in copper and lead-contaminated soil. Water, Air & Soil Pollution, v. 228, n. 2, p. 77, 2017.

GARBISU, C.; ALKORTA, I. Basic concepts on heavy metal soil bioremediation. ejmp & ep (European Journal of Mineral Processing and Environmental Protection), v. 3, n. 1, p. 58-66, 2003.

HAMVUMBA, R.; MATAA, M.; MWEETWA, A. M. Evaluation of sunflower (Helianthus annuus L.), sorghum (Sorghum bicolor L.) and chinese cabbage (Brassica chinensis) for phytoremediation of lead contaminated soils. Environment and Pollution, v. 3, n. 2, p. 65, 2014.

HAUSLADEN, D. M.; ALEXANDER-OZINSKAS, A.; MCCLAIN, C.; FENDORF, S. Hexavalent chromium sources and distribution in California groundwater. Environmental science & technology, v. 52, n. 15, p. 8242-8251, 2018.

Instituto Adolfo Lutz (São Paulo). Métodos físico-químicos para análise de alimentos/coordenadores Odair Zenebon, Neus Sadocco Pascuet e Paulo Tiglea. São Paulo: Instituto Adolfo Lutz, 2008. 1020p.

ISLAM, M. S.; AHMED, M. K.; RAKNUZZAMAN, M.; HABIBULLAH-AL-MAMUN, M.; ISLAM, M. K. Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological indicators, v. 48, p. 282-291, 2015.

DE SÁ, T. C. L. L.; MARQUES, M.; DE SOUZA MOREIRA, F. M.; SIQUEIRA, J. O. Crescimento e teor de metais de mudas de espécies arbóreas cultivadas em solo contaminado com metais pesados. Pesquisa Agropecuária Brasileira, Brasília, v. 35, n. 1, p. 121-132, 2000.

MALAVOLTA, E. et al. Avaliação do estado nutricional das plantas: princípios e aplicações. 2ª ed. Piracicaba: Potafos, 1997. 319p.

MCLEAN, J. E.; BLEDSOE, B. E. Ground water issue. Behaviour of metals in soils. United States Environmental Protection Agency Office of Solid Waste and Emergency Response. EPA/540/S-92/018, 1992.

MIKKONEN, H. G.; DASIKA, R.; DRAKE, J. A.; WALLIS, C. J.; CLARKE, B. O.; REICHMAN, S. M. Evaluation of environmental and anthropogenic influences on ambient background metal and metalloid concentrations in soil. Science of the total environment, v. 624, p. 599-610, 2018.

PANDA, S. K.; CHOUDHURY, S. Chromium stress in plants. Brazilian journal of plant physiology, v. 17, n. 1, p. 95-102, 2005.

PANDEY, V. C.; BAJPAI, O.; SINGH, N. Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, v. 54, p. 58-73, 2016.

PRASAD, M. N. V.; FREITAS, H. Metal-tolerant plants: biodiversity prospecting for phytoremediation technology. In: Trace Elements in the Environment. CRC Press, 2005. p. 501-524.

R DEVELOPMENT CORE TEAM, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

RAIJ, B. VAN. Análise química para avaliação da fertilidade de solos tropicais. IAC, 2001.

RAHMAN, M. M.; AZIRUN, S. M.; BOYCE, A. N. Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). PloS one, v. 8, n. 5, p. e62941, 2013.

REBAH, F. B.; PRÉVOST, D.; YEZZA, A.; TYAGI, R. D. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review. Bioresource technology, v. 98, n. 18, p. 3535-3546, 2007.

REVATHI, K.; HARIBABU, T. E.; SUDHA, P. N. Phytoremediation of chromium contaminated soil using sorghum plant. International Journal of Environmental Sciences, v. 2, n. 2, p. 417, 2011.

SARWAR, N.; IMRAN, M.; SHAHEEN, M. R.; ISHAQUE, W.; KAMRAN, M. A.; MATLOOB, A.; REHIM, A.; HUSSAIN, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, v. 171, p. 710-721, 2017.

SAYYED, M. R. G.; SAYADI, M. H. Variations in the heavy metal accumulations within the surface soils from the Chitgar industrial area of Tehran. Proceedings of the International Academy of Ecology and Environmental Sciences, v. 1, n. 1, p. 36, 2011.

SHANKER, A. K.; CERVANTES, C.; LOZA-TAVERA, H.; AVUDAINAYAGAM, S. Chromium toxicity in plants. Environment international, v. 31, n. 5, p. 739-753, 2005.

SINGH, H. P.; MAHAJAN, P.; KAUR, S.; BATISH, D. R.; KOHLI, R. K. Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, v. 11, n. 3, p. 229-254, 2013.

SINHA, V.; PAKSHIRAJAN, K.; CHATURVEDI, R. Chromium tolerance, bioaccumulation and localization in plants: An overview. Journal of environmental management, v. 206, p. 715-730, 2018.

SILVA, M. L. S.; VITTI, G. C.; TREVIZAM, A. R. Concentration of heavy metals in grain of plants cultivated in soil with different contamination levels. Pesquisa Agropecuária Brasileira, v. 42, n. 4, p. 527-535, 2007.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 4. ed. Porto Alegre: Artmed, 2009. 848p.

TANGAHU, B. V.; ABDULLAH, S.; ROZAIMAH, S.; BASRI, H.; IDRIS, M.; ANUAR, N.; MUKHLISIN, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, v. 2011, 2011.

TAVARES, S. R. L.; OLIVEIRA, S. A.; SALGADO, C. M. Avaliação de espécies vegetais na fitorremediação de solos contaminados por metais pesados. Holos, v. 5, p. 80-97, 2013.

WELZ, B.; BECKER-ROSS, H.; FLOREK, S.; HEITMANN, U. High-resolution continuum-source atomic absorption spectrometry: the better way to do atomic absorption spectrometry. Weinheim: Wiley-VCH, p. 294, 2005.

Published
2021-03-26
Section
Tecnologias Limpas