Independent and simultaneous adjustment to stimulate biomass above the Savanna Soil, Parque Cerrado phytophysiognomy

Keywords: Additivity, Biological consistency, Equation system, Precision

Abstract

Most researchers often overlook the biological consistency required when adjusting models to estimate total biomass and above-ground components. Mathematical models to estimate biomass that fail to take into account dependence relationship between tree components and the whole are scantily studied in native forests, especially for the Cerrado biome. Current investigation compares the above-ground biomass estimators by two different methods, independent and simultaneous adjustment of equations. Above-ground biomass data for the components and whole were collected. Mathematical models to estimate total biomass and components were then independently adjusted by the ordinary least squares method and simultaneously by the apparently unrelated nonlinear regression method. The equations´ biological consistency was verified by the two methods, coupled to heteroscedasticity, which were adjusted after having the weights of their coefficients calculated by variance structure. Simultaneously adjusted equation system presented biological consistency and lower prediction intervals when compared to the independent adjustment of equations, despite demonstrating similar statistical parameters. Biomass models of the components and total, for the phytophysiognomy Cerrado Park, should be estimated by equation systems to ensure additivity and precision.

Author Biographies

Gabriel Mendes Santana, Universidade Federal do Paraná - UFPR
Doutorando em Engenharia Florestal pela Universidade Federal do Paraná (UFPR), Curitiba (PR), Brasil.
Emmanoella Costa Guaraná Araujo, Universidade Federal do Paraná - UFPR
Doutoranda em Engenharia Florestal pela Universidade Federal do Paraná (UFPR), Curitiba (PR), Brasil.
Carlos Roberto Sanquetta, Universidade Federal do Paraná - UFPR
Professor da Universidade Federal do Paraná (UFPR), Curitiba (PR), Brasil.
Sylvio Péllico Netto, Universidade Federal do Paraná - UFPR
Professor da Universidade Federal do Paraná (UFPR), Curitiba (PR), Brasil.
Fábio Venturoli, Universidade Federal de Goiás - UFG
Professor da Universidade Federal de Goiás (UFG) Goiânia (GO), Brasil.

References

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013.

ANTÓNIO, N. et al. Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Canadian Journal of Forest Research, v. 37, n. 5, p. 895-906, 2007.

BEHLING, A. et al. Critical analyses when modeling tree biomass to ensure additivity of its components. Anais da Academia Brasileira de Ciências, v. 90, n. 2, p. 1759-1774, 2018.

CARDOSO, M. R. D.; MARCUZZO, F. F. N.; BARROS, J. R. Climatic Classification of Köppen-Geiger For the State of Goias and Federal District. Acta Geográfica, v. 8, n. 16, p. 40-55, 2014.

CARVALHO, J. P.; PARRESOL, B. R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management, v. 179, n. 1-3, p. 269-276, 2003.

CHIYENDA, S. S.; KOZAK, A. Additivity of component biomass regression equations when the underlying model is linear. Canadian Journal of Forest Research, v. 14, p. 441-446, 1984.

CUNIA, T.; BRIGGS, R. D. Forcing additivity of biomass tables - some empirical results. Canadian Journal of Forest Research, v. 14, p. 376-384, 1984.

GENET, A. et al. Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. Forest Ecology and Management, v. 261, n. 7, p. 1188-1202, 2011.

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Coordenação Geral de Observação da Terra. DETER - Alertas de desmatamento no Cerrado Brasileiro. Disponível em: http://www.obt.inpe.br/cerrado. Acesso em: 05 nov. 2019.

KOZAK, A. Methods of ensuring additivity of biomass components by regression analyses. Forest Chronicle, v. 46, n. 5, p. 402-406, 1970.

MIGUEL, E. P. et al. Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite. Pesquisa Agropecuária Brasileira, v. 50, n. 9, p. 829-839, 2015.

PARRESOL, B. R. Assessing tree and stand biomass: A review with examples and critical comparisons. Forest Science, v. 45, n. 4, p. 573-593, 1999.

PARRESOL, B. R. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, v. 31, n. 5, p. 865-878, 2001.

PÉLLICO NETTO, S.; BRENA, D. A. Inventário florestal. Curitiba: Edição

Autores, 1997. 316p.

PICARD, N.; SAINT-ANDRÉ, L.; HENRY, M. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. [s. l.] Rome and Montpellier: Food and Agricultural Organization of the United Nations and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 2012.

REED, D. D.; GREEN, E. J. A method of forcing additivity of biomass tables when using nonlinear models. Canadian Journal of Forest Research, v. 15, n. 6, p. 1184-1187, 1985.

RIBEIRO, J. F.; WALTER, B. M. T. As Principais Fitofisionomias do Bioma Cerrado. In: SANO, S. M.; ALMEIDA, S. P.; RIBEIRO, J. F. (ed.). Cerrado: ecologia e flora v. 2. Brasília: EMBRAPA-CERRADOS, 2008. 876p.

SANO, E. E. et al. Land cover mapping of the tropical savanna region in Brazil. Environmental Monitoring and Assessment, v. 166, n. 1-4, p. 113-124, 2010.

SANQUETTA, C. R. et al. Estoques de biomassa e carbono em povoamentos de acácia negra em diferentes idades no Rio Grande do Sul. Scientia Forestalis/Forest Sciences, v. 40, n. 103, p. 361-370, 2014.

SANQUETTA, C. R. et al. Simultaneous estimation as alternative to independent modeling of tree biomass. Annals of Forest Science, v. 72, n. 8, p. 1099-1112, 2015.

SATOO, T.; MADGWICK, H. A. Forest Biomass. The Hague: Martinus Nijhoff, 1982. 151p.

SANTOS, H. G.; et al. Sistema brasileiro de classificação de Solo. 5. ed. Brasília: Embrapa, 2018. 356p.

SCHUMACHER, F. X.; HALL, F. D. S. Logarithmic expression of timber-tree volume. Journal of Agricultural Research, v. 47, n. 9, p. 719-734, 1933.

WHITE, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica, v. 48, n. 4, p. 817-838, 1980.

Published
2021-06-28
Section
Environment