Prediction of voluntary intake and enteric methane emission by dairy heifers in integrated systems

Autores/as

DOI:

https://doi.org/10.17765/2176-9168.2023v16n4e10712

Palabras clave:

Bovinos de leite, Gases de efeito estufa, Mudanças climáticas, Pecuária sustentável

Resumen

To compare the predictions of voluntary intake and enteric methane (CH4) emissions in integrated crop-livestock (ICL) and integrated crop-livestock-forestry (ICLF) systems, a 2 × 2 crossover trial was carried out with eight Girolando heifers divided into two groups according to their live weight (LW) and age. The daily means of total dry matter intake (9.66 and 8.44 kg day-1) and total enteric CH4 emission (9.99 and 8.79 MJ day-1; and 186.68 and 164.30 g day-1) were similar between ICL and ICLF, respectively. The CH4 emission expressed per unit of crude protein intake (CPI) was lower (P<0.001) in the ICLF (8.40 MJ kg CPI-1; 157.00 g kg CPI-1) than in the ICL (10.94 MJ kg CPI-1; 204.37 g kg CPI-1), but per intake unit of total digestible nutrient (TDNI) or non-fiber carbohydrate (NFCI) CH4 emission was higher (P<0.001) in the ICLF system. Significant correlations between forage digestibility and nutrient composition with CH4 emissions per unit of nutrient intake were observed. In conclusion, the daily means of total intake and total enteric methane emissions per heifer did not differ between the ICL and ICLF systems; however, the CH4 emission per nutrient intake depended on the digestibility and nutrient composition of the pasture.

Biografía del autor/a

Ana Karina Dias Salman, Brazilian Agricultural Research Corporation

PhD in Animal Science; Researcher A of the Brazilian Agricultural Research Corporation-EMBRAPA Rondônia; Porto Velho, Rondônia, Brazil

Francyelle Ruana Faria da Silva, Federal University of Rondônia

Master in Environmental Sciences; Graduate Program in Environmental Sciences, Federal University of Rondônia; Rolim de Moura, Rondônia, Brasil.

Marlos Oliveira Porto, Federal University of Rondônia

PhD in Animal Science; Associate Professor I and Coordinator of the Beef Cattle Sector; Presidente Medici, Rondônia, Brazil

Jucilene Braitenbach Cavali, Federal University of Rondônia

PhD in Animal Science; Associate Professor III at the Federal University of Rondônia - UNIR; Presidente Médici, Rondônia, Brasil.

Elaine Coimbra de Souza, Federal University of Rondônia

Doctoral Student and Master in Regional Development and Environment; Porto Velho, Rondônia, Brazil

Giovanna Araújo de Carvalho, Federal University of Rondônia

Master in Regional Development and Environment; Porto Velho, Rondônia, Brazil

Citas

ABDALLA, A. L.; LOUVANDINI, H.; SALLAM, S. M. A. H.; BUENO, I. C. S.; TSAI, S. M.; FIGUEIRA, A.V.O. In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Tropical Animal Health and Production v. 44, n. 3, p. 953-964, 2012. DOI: https://doi.org/10.1007/s11250-011-9992-0

ALBUQUERQUE, I.; ALENCAR, A.; ANGELO, C.; AZEVEDO, T.; BARCELLOS, F.; COLUNA, I.; COSTA JÚNIOR, C.; CREMER, M.; PIATTO, M.; POTENZA, R.; QUINTANA, G.; SHIMBO, J.; TSAI, D.; ZIMBRES, B. Análise das emissões brasileiras de gases de efeito estufa e suas implicações para as metas do clima do Brasil 1970–2019. Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa – SEEG8, 2020. Available on: https://www.oc.eco.br/wp-content/uploads/2020/12/OC_RelatorioSEEG2020_final.pdf.

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; MORAES, G.; LEONARDO, J.; SPAROVEK, G. Mapa de classificação climática de Köppen para o Brasil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2014. Available on: http://www.lerf.eco.br/img/publicacoes/Alvares_etal_2014.pdf

ANKOM. Technology Method 3. In vitro true digestibility using the DAISYP II P incubator, 2020. Available on: http://www.ankom.com/media/documents/IVDMD_0805_D200.pdf

ARCHIMÈDE, H.; EUGÈNE, M.; MARIE-MAGDALEINE, C.; BOVAL, M.; MARTIN, C.; MORGAVI, D. P.; LECOMTE, P.; DOREAU, M. Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology v. 166, p. 59-64, 2011. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.003

BENAOUDA, M.; GONZÁLEZ-RONQUILLO, M.; APPUHAMY, J. A. D. R. N.; KEBREAB, E.; MOLINA, L. T.; HERRERA-CAMACHO, J.; KU-VERA, J. C.; ÁNGELES-HERNÁNDEZ, J. C.; CASTELÁN-ORTEGA, O. A. Development of mathematical models to predict enteric methane emission by cattle in Latin America. Livestock Science. v. 241, p. 104177, 2020. DOI: https://dx.doi.org/10.1016/j.livsci.2020.104177

BHARANIDHARAN, R.; AROKIYARAJ, S.; KIM, E. B.; LEE, C. H.; WOO, Y. W.; NA, Y.; KIM, D.; KIM, K. H. Ruminal methane emissions, metabolic, and microbial profile of Holstein steers fed forage and concentrate, separately or as a total mixed ration. PLoS ONE v. 13, n. 8, p. e0202446, 2018. DOI: https://doi.org/10.1371/journal.pone.0202446

CAPPELLE, E. R.; VALADARES FILHO, S. C.; SILVA, J. F. C.; CECON, P. R. Estimativas do valor energético a partir de características químicas e bromatológicas dos alimentos. Revista Brasileira de Zootecnia, v. 30, n. 6, p. 1837-1856, 2001. DOI: https://doi.org/10.1590/S1516-35982001000700022

CEPEA - Centro de Estudos Avançados em Economia Aplicada 2020. PIB do agronegócio brasileiro Available on: https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx

COTA, O. L.; FIGUEREDO, D. M.; BRANCO, R. H.; MAGNANI, E.; NASCIMENTO, C. F.; OLIVEIRA, L. F.; MERCADANTE, M. E. Z. Methane emission by Nellore cattle subjected to different nutritional plans. Tropical Animal Health and Production, v. 46, n. 7, p. 1229-1234, 2014. DOI: http://dx.doi.org/10.1007/s11250-014-0632-3

DETMANN, E.; QUEIROZ, A. C.; CABRAL, L.S. Avaliação do nitrogênio total (proteína bruta) pelo método Kjeldahl. In: DETMANN, E.; SOUZA, M. A.; VALADARES FILHO, S. C.; QUEIROZ, A. C.; BERCHIELLI, T. T.; SALIBA, E. O. S.; CABRAL, L. S.; PINA, D. S.; LADEIRA, M. M.; AZEVÊDO, J. A. G. Métodos para análise de alimentos. Instituto Nacional de Ciência e Tecnologia de Ciência Animal. INCT, 2012. Viçosa. 214 p.

DINI, Y.; GERE, J. I.; CAJARVILLE, C.; CIGANDA VERÓNICA, S. Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in South America. Animal Production Science, v. 58, p. 2329-2334, 2017. DOI: https://doi.org/10.1071/AN16803

ELLIS, J. L.; KEBREAB, E.; ODONGO, N. E.; MCBRIDE, B. W.; OKINE, E. K.; FRANCE, J. 2007. Prediction of methane production from dairy and beef cattle. Journal of Dairy Science, v. 90, n, 7, p. 3456-3466, 2007. DOI: https://doi.org/10.3168/jds.2006-675

FAO. 2020. Background information on Livestock Environmental Assessment and Performance Partnership and technical Advisory Group on Biodiversity. In: Biodiversity and the livestock sector – Guidelines for quantitative assessment – Version 1. Rome, Livestock Environmental Assessment and Performance Partnership (FAO LEAP). DOI: https://doi.org/10.4060/ca9295en

FIGUEIREDO, E. B.; JAYASUNDARA, S.; BORDONAL, R. O.; BERCHIELLI, T. T.; REIS, R. A.; RIDDLE, C. W.; LA SCALA JÚNIOR, L. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production, v. 12, p. 420-431, 2017. DOI: https://doi.org/10.1016/j.jclepro.2016.03.132

FROTA, M. N. L.; CARNEIRO, M. S. S.; PEREIRA, E. S.; BERNDT, A.; FRIGHETTO, R. T. S.; SAKAMOTO, L. S.; MOREIRA FILHO, M. A.; CUTRIM JÚNIOR, J. A.; CARVALHO, G. M. C. Metano entérico de bovinos em pastagem a pleno sol e em sistema silvopastoril na Amazônia. Pesquisa Agropecuária Brasileira, v. 52, n. 11, p. 1099-1108, 2017. DOI: https://doi.org/10.1590/S0100-204X2017001100016

GUIMARÃES, C. G.; RIBEIRO, K. G.; VIANA, M. C. M.; PEREIRA, R. C.; SANTOS, J. B. Capim-braquiária no sistema agrossilvipastoril sob diferentes arranjos de eucalipto. Revista Brasileira de Ciências Agrárias, v. 13, n. 1, p. e5512, 2018. DOI: https://doi.org/10.5039/agraria.v13i1a5512

HAMMOND, K. L.; MUETZEL, S.; WAGHORN, G. C.; PINARES-PATINO, C. S.; BURKE, J. L.; HOSKIN, S. O. The variation in methane emissions from sheep and cattle cannot be explained by the chemical composition of ryegrass. Proceedings of the New Zealand Society of Animal Production, v. 69, p. 174-178, 2009. Available on: http://www.nzsap.org/proceedings/2009/variation-methane-emissions-sheep-and-cattle-not-explained-chemical-composition

HODGSON, J. Grazing Management: Science into Practice Ed. Logman Scientific & Technical, 1990, 203p.

HUHTANEN, P.; RAMIN, M.; HRISTOV, A. N. Enteric methane emissions can be reliably measured using the GreenFeed monitoring unit. Livestock Science, v. 222, p. 31-40, 2019. DOI : http://dx.doi.org/10.1016/j.livsci.2019.01.017

IPCC. Intergovernmental Panel on Climate Change. Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: HIRAISHI, T.; KRUG, T.; TANABE, K.; SRIVASTAVA, N.; BAASANSUREN, J.; FUKUDA, M.; TROXLER, T. G. (Eds.) Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, IPCC, Switzerland, 2014. Available on: https://www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories-wetlands/

KNAPP, J. R.; LAUR, G. L.; VADAS, P. A.; WEISS, W. P.; TRICARICO, J. M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, v. 97, n. 6, p. 3231–3261, 2014. DOI: https://doi.org/10.3168/jds.2013-7234

LAZZARINI, I.; DETMANN, E.; SAMPAIO, C. B. I.; PAULINO, M. F.; VALADARES FILHO, S. C.; SOUZA, M. A.; OLIVEIRA, F. A. Intake and digestibility in cattle fed low-quality tropical forage supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia, v. 38, n. 10, 2021- 2030, 2009.

MACHADO, F. S.; PEREIRA, L. G. R.; GUIMARÃES JÚNIOR, R.; LOPES, F. C. F.; CHAVES, A. V.; CAMPOS, M. M.; MORENZ, M. J. F. Emissões de metano na pecuária: Conceitos, métodos de avaliação e estratégias de mitigação. Juiz de Fora:Embrapa Gado de Leite, 92 (Documentos, 147) ISSN 1516-7453, 2011. Available on: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/895247/1/Doc147EmissoesCH4.pdf

MOMBACH, M. A.; PEDREIRA, B. C.; PEREIRA, D. H.; CABRAL, L. S.; RODRIGUES, R. A. R. Emissão de metano entérico por bovinos: O que sabemos e que podemos fazer? In: Simpósio de pecuária integrada, 2., Sinop-MT. Recuperação de pastagens: anais. Cuiabá: Fundação Uniselva, 181-202p, 2016. Available on: https://www.alice.cnptia.embrapa.br/handle/doc/1060780

MORAES, L. E.; STRATHE, A. B.; FADEL, J. G.; CASPER, D. P.; KEBREAB, E. Prediction of enteric methane emissions from cattle. Global Change Biology, v. 20, n. 7, p. 2140–2148, 2014. DOI: https://doi.org/10.1111/gcb.12471

NATIONAL RESEARCH COUNCIL, NRC. Nutrient requirements of dairy cattle. 7th ed. Washington: National Research Council, 2001, 381p. Available on: https://nap.nationalacademies.org/catalog/9825/nutrient-requirements-of-dairy-cattle-seventh-revised-edition-2001

NUSSIO, L. G.; CAMPOS, F. P.; LIMA, M. L. M. Metabolismo de carboidratos estruturais. In: BERCHIELLI, T. T.; PIRES, A. V.; OLIVEIRA, S. G. Nutrição de Ruminantes. 2 ed. Jaboticabal: Funep, 2011, 193-234p.

OLIVEIRA, L. B. T.; SANTOS, A. C.; ANDRÉ, T. B.; SANTOS, J. G. D.; OLIVEIRA, H. M. R. Influence of a silvopastoral system on anatomical aspects and dry matter quality of mombasa and marandu grasses. Journal of Agriculture and Ecology Research International, v. 13, n. 3, p. 1-11, 2017. Available on: http://www.adaltech.com.br/anais/zootecnia2018/resumos/trab-1727.pdf

OLIVEIRA, P. P. A.; BERNDT, A.; PEDROSO, A. F.; ALVES, T. C.; PEZZOPANE, J. R. M.; SAKAMOTO, L. S.; HENRIQUE, F. L.; RODRIGUES, P. H. M. Greenhouse gas balance and carbon footprint of pasture-based beef cattle production systems in tropical regions (Atlantic Forest biome). Animal, v. 14, n. S3, p. s427- s437, 2020. DOI:

https://doi.org/10.1017/S1751731120001822

PATRA, A. K. Prediction of enteric methane emissions from cattle using linear and non-linear statistical models in tropical production systems. Mitigation and Adaptation Strategies for Global Change, v. 22, n. 4, p. 629-650, 2017. DOI:https://doi.org/10.1007/s11027-015-9691-7

PETERSON, C. A.; EVINER, V. T.; GAUDIN, A. C. M. Ways forward for resilience research in agroecosystems. Agricultural Systems, v. 162, p. 19-27, 2018. DOI: https://doi.org/10.1016/j.agsy.2018.01.011

PEZZOPANE, J. R. M.; BOSI, C.; NICODEMO, M. L. F.; SANTOS, P. M.; CRUZ, P. G.; PARMEJIANI, R. S. Microclimate and soil moisture in the silvopastoral system in southeastern Brazil. Bragantia, v. 74, n. 1, p. 110-119, 2015. DOI: https://doi.org/10.1590/1678-4499.0334

PROHMANN, P. E. F.; BRANCO, A. F.; PARIS, W.; BARRETO, J.C.; MAGALHÃES, V. J. A.; GOES, R. H. T. B.; OLIVEIRA, M. V. M. Método de amostragem e caracterização química da forragem consumida por bovinos em pasto consorciado de aveia e azevém. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 64, n. 4, p. 953-958, 2012. DOI: https://doi.org/10.1590/S0102-09352012000400023

SILVA, F. R. F.; SALMAN, A. K. D.; CRUZ, P. G.; PORTO, M. O.; CAVALI, J.; FERREIRA, E.; SOUZA, E. C.; CARVALHO, G. A. Bromatological composition and ruminal degradability of Xaraés palisade grass under grazing in integrated systems. Acta Scientiarum. Animal Sciences, v. 43, n. 1, p. e53004, 2021. DOI: https://doi.org/10.4025/actascianimsci.v43i1.53004

SNIFFEN, C. J.; O’CONNOR, J. D.; VAN SOEST, P. J.; FOX, D. G.; RUSSELL, J. B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, v. 70, n. 11, p. 3562-3577, 1992. DOI: https://doi.org/10.2527/1992.70113562x

SOBRINHO, T. L. P.; BRANCO, R.H.; MAGNANI, E.; BERNDT, A.; CANESIN, R.C.; MARCADANTE, M. E. Z. Development and evaluation of prediction equations for methane emission from Nellore cattle. Acta Scientiarum. Animal Sciences, v. 41, p. e42559, 2019. DOI: https://doi.org/10.4025/actascianimsci.v41i1.42559

SOUZA, E. C.; SALMAN, A. K. D.; CRUZ, P. G.; VEIT, H. M.; CARVALHO, G. A.; SILVA, F. R. F.; SCHMITT, E. Thermal comfort and grazing behavior of Girolando heifers in the ICL and Crop-Livestock-Forest (ICLF) systems. Acta Scientiarum. Animal Sciences,v. 41, p. e46483, 2019. DOI: https://doi.org/10.4025/actascianimsci.v41i1.46483

SOUZA FILHO, W.; NUNES, P. A. A.; BARRO, R. S.; KUNRATH, T. R.; ALMEIDA, G. M.; GENRO, T. C. M.; BAYER, C.; CARVALHO, P. C. F. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: Trade-offs between animal performance and environmental impacts. Journal of Cleaner Production, v. 213, p. 968e975, 2019. DOI: https://doi.org/10.1016/j.jclepro.2018.12.245

WEISS, W.P. Energy prediction equations for ruminant feed. In: Cornell Nutrition Conference for Feed Manufacturers, 61, 1999, Proceedings…, Ithaca: Cornell University, 1991, 176-185p. Available on: https://edisciplinas.usp.br/pluginfile.php/5012801/mod_resource/content/0/weiss%201993.pdf

Publicado

2023-11-30

Cómo citar

Salman, A. K. D., Silva, F. R. F. da ., Porto, M. O. ., Cavali, J. B., Souza, E. C. de ., & Carvalho, G. A. de . (2023). Prediction of voluntary intake and enteric methane emission by dairy heifers in integrated systems . Revista Em Agronegócio E Meio Ambiente, 16(4), 1–16. https://doi.org/10.17765/2176-9168.2023v16n4e10712

Número

Sección

Meio Ambiente