Agua magnetizada: impactos en el desarrollo científico y tecnológico global

Autores/as

DOI:

https://doi.org/10.17765/2176-9168.2024v17n.Especial.e12937

Palabras clave:

Clean technologies, Magnet, Magnetic field, Scientometrics

Resumen

Research on magnetized water increases every year, several areas of science seek to apply this technology, since the properties of water are modified after the magnetization process. The objective of this study was to carry out an unprecedented bibliometric analysis to evaluate the evolution of research on magnetized water. The documents were retrieved from the Web of Science collection and a descriptive bibliometric analysis was carried out by year, research area, source, citation, and region. Bibliometric mapping techniques, cluster analysis through the occurrence of keywords, co-authorship and bibliographic coupling were also applied. The results indicated that research on magnetized water has grown exponentially, with emphasis on the countries, China, Iran and Egypt, and in areas such as engineering, chemistry, materials science, agriculture and physics. Most documents were categorized into five areas: concrete, agriculture, magnetic resonance image (MRI), scale and dust removal. Dust removal has been identified as a hidden prominent research area. Furthermore, it was revealed that concrete with magnetized water for sustainability is a research trend. The topic still has gaps that must be filled, showing the need to develop more effective and reliable methods to better understand water magnetization.

Biografía del autor/a

Letícia Palaro Stefanuto, Universidade Cesumar / UNICESUMAR

 Mestra em Tecnologias Limpas pela Universidade Cesumar (UNICESUMAR), Maringá (PR), Brasil.

Aline Lopes, Universidade Cesumar / UNICESUMAR

Doutora em Biologia pelo Instituto Nacional de Pesquisas da Amazônia (INPA). Docente do Mestrado em Tecnologias Limpas da Universidade Cesumar (ICETI/ UNICESUMAR), Maringá (PR), Brasil.

Paula Polastri, Universidade Cesumar / UNICESUMAR

Doutora em Engenharia Química pela Universidade Estadual de Maringá (UEM). Docente do Mestrado em Tecnologias Limpas da Universidade Cesumar (ICETI/ UNICESUMAR), Maringá (PR), Brasil.

Maria de los Angeles Perez Lizama, Universidade Cesumar - UNICESUMAR

Doutora em Ecologia de Ambientes Aquáticos Continentais pela Universidade Estadual de Maringá (UEM). Docente do Mestrado em Tecnologias Limpas da Universidade Cesumar (ICETI/ UNICESUMAR), Maringá (PR), Brasil.

José Eduardo Gonçalves, Universidade Cesumar / UNICESUMAR

Doutor em Química pelo Instituto de Química da Universidade Estadual de Campinas (UNICAMP). Docente do Mestrado em Tecnologias Limpas da Universidade Cesumar (ICETI/ UNICESUMAR), Maringá (PR), Brasil.

Natalia Ueda Yamaguchi, Universidade Federal de Santa Catarina / UFSC

Doutora em Engenharia Química pela Universidade Estadual de Maringá (UEM). Docente Adjunta no Centro de Ciências, Tecnologias e Saúde, Departamento de Energia e Sustentabilidade na Universidade Federal de Santa Catarina (UFSC), Campus Araranguá (SC), Brasil.

Citas

ABDEL-MAGID T.I.M.; HAMDAN R.M.; ABDELGADER, A.A.B; et al. Effect of magnetized water on workability and compressive strength of concrete. Procedia Environmental Science, v. 193, p. 494–500, 2017. https://doi.org/10.1016/j.proeng.2017.06.242.

ABSALAN, Y.; GHOLIZADEH, M.; CHOI, H.J. Magnetized solvents: Characteristics and various applications. Journal of Molecular Liquids, v. 335, p. 116167, 2021. https://doi.org/10.1016/j.molliq.2021.116167.

ALI, B.; KURDA, R.; BRITO J.; ALYOUSEF, R. A review on the performance of concrete containing non-potable water. Applied Sciences, v. 11, 6729, 2021. https://doi.org/10.3390/app11156729.

ALIMI, F.; TLILI, M.; BEN AMOR, M. et al. Effect of magnetic water treatment on calcium carbonate precipitation: Influence of the pipe material. Chemical Engineering and Processing: Process Intensification, v. 48, p.1327–1332, 2009. https://doi.org/10.1016/j.cep.2009.06.008.

EL-HANOUN, A.M.; ATTIA, Y.A. et al. Magnetized drinking water improves productivity and blood parameters in geese. Revista Colombiana de Ciências Pecuárias, v. 30, p.209–218, 2017. https://doi.org/10.17533/udea.rccp.v30n3a04.

BELMONTE-UREÑA, L.J.; PLAZA-ÚBEDA, J.A.; VAZQUEZ-BRUST, D.; YAKOVLEVA, N. Circular economy, degrowth and green growth as pathways for research on sustainable development goals: A global analysis and future agenda. Ecological Economics, v. 185, p.107050, 2021. https://doi.org/10.1016/j.ecolecon.2021.107050.

BHARATH, S.; SUBRAJA, S.; KUMAR, P. A. Influence of magnetized water on concrete by replacing cement partially with copper slag. Journal of Chemical and Pharmaceutical Sciences, v. 9, p. 5, 2016.

DALVIT, C.; FOGLIATTO, G.; STEWART, A. et al. Water LOGSY as a method for primary NMR screening: practical aspects and range of applicability. Journal of Biomolecular NMR, v. 21, p. 349–359, 2001. https://doi.org/10.1023/a:1013302231549.

DOBRÁNSKI, J. From mystery to reality: magnetized water to tackle the challenges of climate change and for cleaner agricultural production. Journal of Cleaner Production, v. 425, p. 139077, 2023. https://doi.org/10.1016/j.jclepro.2023.139077.

ESMAEILNEZHAD, E.; CHOI, H.J.; SCHAFFIE, M. et al. Characteristics and applications of magnetized water as a green technology. Journal of Cleaner Production, v. 161, p. 908–921, 2017. https://doi.org/10.1016/j.jclepro.2017.05.166.

ESPINOSA ÁLVAREZ, R.F.; NOVOA BLANCO, J.F.; MONTERO GARCÍA, J. L. Un nuevo modelo de tratamiento en las ciencias médicas: el agua magnetizada. Revista Cubana de Medicina General Integral, v. 3, p. 584–587, 1997.

GAAFAR, D.; MOOSA, M.; HUSSAIN, M.S. et al. Effect of magnetic water on physical properties of different kind of water, and studying its ability to dissolving kidney stone. Journal of Natural Sciences Research, v. 5, n. 18, p. 85-96, 2015.

GARRIGOS-SIMON, F.J.; NARANGAJAVANA-KAOSIRI, Y.; LENGUA-LENGUA, I. Tourism and Sustainability: A Bibliometric and Visualization Analysis. Sustainability, v. 10, p. 1976, 2018. https://doi.org/10.3390/su10061976.

GHAURI, S.A.; ANSARI, M.S. Increase of water viscosity under the influence of magnetic field. Journal of Applied Physics, v. 100, p. 066101, 2006. https://doi.org/10.1063/1.2347702.

GHORBANI, S.; GHORBANI, S.; TAO, Z. et al. Effect of magnetized water on foam stability and compressive strength of foam concrete. Construction and Building Materials, v. 197, p. 280–290, 2019a. https://doi.org/10.1016/j.conbuildmat.2018.11.160.

GHORBANI, S.; SHARIFI, S.; DE BRITO, J. et al. Using statistical analysis and laboratory testing to evaluate the effect of magnetized water on the stability of foaming agents and foam concrete. Construction and Building Materials, v. 207, p. 28–40, 2019b. https://doi.org/10.1016/j.conbuildmat.2019.02.098.

GUIVEL-SCHAREN, V.; SINNWELL, T.; WOLFF, S.D.; BALABAN, R.S. Detection of proton chemical exchange between metabolites and water in biological tissues. Journal of Magnetic Resonance, v. 133, p. 36–45, 1998. https://doi.org/10.1006/jmre.1998.1440.

HALLINGER, P.; CHATPINYAKOOP, C. A bibliometric review of research on higher education for sustainable development, 1998–2018. Sustainability, v. 11, p. 2401, 2019. https://doi.org/10.3390/su11082401.

HASAANI, A.S.; HADI, Z.L.; RASHEED, K.A. Experimental study of the interaction of magnetic fields with flowing water. International Journal of Basic and Applied Science, v. 03, p. 8, 2015.

HOLYSZ, L.; SZCZES, A.; CHIBOWSKI, E. Effects of a static magnetic field on water and electrolyte solutions. Journal of Colloid and Interface Science, v. 316, p. 996–1002, 2007. https://doi.org/10.1016/j.jcis.2007.08.026.

KOTB, A. Magnetized Water and Memory Meter. EPE, v. 05, p. 422–426, 2013. https://doi.org/10.4236/epe.2013.56045.

MARZI, G.; DABI?, M.; DAIM, T.; GARCES, E. Product and process innovation in manufacturing firms: a 30-year bibliometric analysis. Scientometrics, v. 113, p. 673–704, 2017. https://doi.org/10.1007/s11192-017-2500-1.

MATULOVIC, M.; PUTTI, F.F.; CREMASCO, C.P.; GABRIEL FILHO, L.R.A. Technology 4.0 with 0.0 costs: fuzzy model of lettuce productivity with magnetized water. Acta Scientiarum. Agronomy, v. 43, e51384, 2021. https://doi.org/10.4025/actasciagron.v43i1.51384.

MESCHEDE, C. The Sustainable development goals in scientific literature: a bibliometric overview at the meta-level. Sustainability, v. 12, p 4461, 2020. https://doi.org/10.3390/su12114461.

MGHAIOUINI, R.; BENZBIRIA, N.; BELGHITI, M.E. et al Optical properties of water under the action of the electromagnetic field in the infrared spectrum. Materials Today: Proceedings, v. 30, p. 1046–1051, 2020. https://doi.org/10.1016/j.matpr.2020.04.518.

PIZZI, S.; CAPUTO, A.; CORVINO, A.; VENTURELLI, A. Management research and the UN sustainable development goals (SDGs): A bibliometric investigation and systematic review. Journal of Cleaner Production, v. 276, p. 124033, 2020. https://doi.org/10.1016/j.jclepro.2020.124033.

PORTO, M. E. G. New notions on water and possibilities of application. Journal of High Dilution Research, v. 6, n. 21, p. 19–23, 2022. https://doi.org/10.51910/ijhdr.v6i21.34.

PRIETO-JIMÉNEZ, E.; LÓPEZ-CATALÁN, L.; LÓPEZ-CATALÁN, B.; DOMÍNGUEZ-FERNÁNDEZ, G. Sustainable development goals and education: a bibliometric mapping analysis. Sustainability v. 13, p. 2126, 2021. https://doi.org/10.3390/su13042126.

PUTTI, F.F.; FILHO, L.R.A.G.; KLAR, A.E. et al. Desenvolvimento Inicial da Alface (Lactuca sativa L.) Irrigada com Água Magnetizada. Revista Cultura e Saber, v. 6, p. 83–90, 2013.

PUTTI, F.F.; GABRIEL FILHO, L.R.A.; CREMASCO, C.P.; SILVA JUNIOR, J.F. Água tratada magneticamente para irrigação: efeitos na produção e eficiência do uso da água na cultura da cenoura (Daucus carota L.). Revista Colombiana de Ciencias Hortícolas, v. 12, p. 447–455, 2018. https://doi.org/10.17584/rcch.2018v12i2.7560.

ROMANELLI, J.P.; GONÇALVES, M.C.P.; DE ABREU PESTANA, L.F. et al. Four challenges when conducting bibliometric reviews and how to deal with them. Environmental Science and Pollution Research, v. 28, p. 60448–60458, 2021. https://doi.org/10.1007/s11356-021-16420-x.

SIMKO, I. Analysis of bibliometric indicators to determine citation bias. Palgrave Commun, v. 1, p. 1–9, 2015. https://doi.org/10.1057/palcomms.2015.11.

TALLURI, S.; WAGNER, G. An Optimized 3D NOESY–HSQC. Journal of Magnetic Resonance, Series B, v. 112, p. 200–205, 1996. https://doi.org/10.1006/jmrb.1996.0132.

TOLEDO, E.J.L.; RAMALHO, T.C.; MAGRIOTIS, Z.M. Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. Journal of Molecular Structure, v. 888, p. 409–415, 2008. https://doi.org/10.1016/j.molstruc.2008.01.010.

UENO, S. Studies on magnetism and bioelectromagnetics for 45 years: From magnetic analog memory to human brain stimulation and imaging. Bioelectromagnetics, v. 33, p. 3–22, 2012. https://doi.org/10.1002/bem.20714.

USANOV, A.D.; ULYANOV, S.S.; ILYUKHINA, N.S.; USANOV, D.A. Monitoring of changes in cluster structures in water under AC magnetic field. Optics and Spectroscopy, v. 120, p. 82–85, 2016. https://doi.org/10.1134/S0030400X16010239.

VAN ECK, N.J.; WALTMAN, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, v. 84, p. 523–538, 2010. https://doi.org/10.1007/s11192-009-0146-3.

WANG, H.; DU, Y.; WEI, X.; HE, X. An experimental comparison of the spray performance of typical water-based dust reduction media. Powder Technology, v. 345, p. 580–588, 2019. https://doi.org/10.1016/j.powtec.2019.01.032.

WANG, Y; WEI, H.; LI, Z. Effect of magnetic field on the physical properties of water. Results in Physics, v. 8, p. 262–267, 2018. https://doi.org/10.1016/j.rinp.2017.12.022.

WANG, Y.; ZHANG, B.; GONG, Z. et al. The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments. Journal of Molecular Structure, v. 1052, p. 102–104, 2013. https://doi.org/10.1016/j.molstruc.2013.08.021.

WUNI, I.Y.; SHEN, G.Q.P.; OSEI-KYEI, R. Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy Build, v. 190, p.69–85, 2019. https://doi.org/10.1016/j.enbuild.2019.02.010.

YAKOVLEVA, N.; VAZQUEZ-BRUST, D. Stakeholder Perspectives on CSR of Mining MNCs in Argentina. Journal of Business Ethics, v. 106, p.:191–121, 2012. https://doi.org/10.1007/s10551-011-0989-4.

YAMAGUCHI, N.U.; BERNARDINO, E.G.; FERREIRA, M.E.C. et al. Sustainable development goals: a bibliometric analysis of literature reviews. Environ Sci Pollut Res, v. 30, p. 5502–5515, 2023. https://doi.org/10.1007/s11356-022-24379-6.

ZAIDI, N.S.; SOHAILI, J.; MUDA, K.; SILLANPÄÄ, M. Magnetic field application and its potential in water and wastewater treatment systems. Separation & Purification Reviews, v. 43, p.206–240 2014. https://doi.org/10.1080/15422119.2013.794148.

ZHOU, K.X.; LU, G.W.; ZHOU, Q.C. et al. Monte Carlo simulation of liquid water in a magnetic field. Journal of Applied Physics, v. 88, p.1802–1805, 2000. https://doi.org/10.1063/1.1305324.

ZUÑIGA ESCOBAR, O.; JIMÉNEZ, C.O.; BENAVIDES, J.A. et al. Efecto del agua magnetizada en el desarrollo y la producción de cúrcuma (Curcuma longa L.). Revista Colombiana de Ciencias Hortícolas, v. 10, p. 176-185, 2016. https://doi.org/10.17584/rcch.2016v10i1.5112.

ZUPIC, I.; ?ATER, T. Bibliometric methods in management and organization. Organ Res Methods, v. 18, p.429–472, 2015. https://doi.org/10.1177/1094428114562629.

Publicado

2024-12-17

Cómo citar

Stefanuto, L. P., Lopes, A., Polastri, P., Lizama, M. de los A. P., Gonçalves, J. E., & Yamaguchi, N. U. (2024). Agua magnetizada: impactos en el desarrollo científico y tecnológico global. Revista Em Agronegócio E Meio Ambiente, 17, e12937. https://doi.org/10.17765/2176-9168.2024v17n.Especial.e12937