Juvenile stress of short frequency and intensity does not affect rats´ brain white matter

Keywords: Corpus callosum, Immobilization, Myelin, Oligodendrocytes, Psychologic stress

Abstract

The current study evaluates the lasting effects of two types of stress on the corpus callosum (CC). Forty-two male Wistar rats were randomly divided into three groups: Control Group (CG), Physical Stress (FS, immobilization) and Psychological Stress (PS, exposure to predators). Stress procedures occurred for three consecutive days at the juvenile stage (P25-P27) and analyzed at the adult age (P74); brains were retrieved and processed by Klüver-Barrera technique and sections were analyzed by morphometry. Results showed that there were no changes in the general aspects such as animal weight, and in the histological aspects such as CC thickness and quantity of the region´s glia nuclei. Current research suggests that the lasting effects of both models of juvenile stress of short frequency (3 days) and intensity (90 minutes/FS and 20 minutes/PS) were neither detrimental nor protective, featuring a positive adaptation.

Author Biographies

Vivian Fuguhara de Lima, Universidade Estadual de Maringá - UEM
Student of Biomedicine at the State University of Maringá (UEM), Department of Clinical Analysis and Biomedicine (DAB), Maringá (PR), Brazil.
Kathia Terumi Kato, State University of Maringá
Student of Biomedicine at the State University of Maringá (UEM), Department of Clinical Analysis and Biomedicine (DAB), Maringá (PR), Brazil.
Letícia Alexandrino Barilli, State University of Maringá
Student of Biomedicine at the State University of Maringá (UEM), Department of Clinical Analysis and Biomedicine (DAB), Maringá (PR), Brazil.
Silvana Regina de Melo, State University of Maringá
PhD Professor at the Department of Morphological Sciences (DCM) at the State University of Maringá (UEM), Maringá (PR), Brazil.

References

1. Teicher MH, Samson JA. Annual Research Review: Enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry. 2016 Mar;57(3):241–66. doi: https://doi.org/10.1111/jcpp.12507.

2. Goldstein A, Covington BP, Mahabadi N, Mesfin FB. Neuroanatomy, Corpus Callosum. StatPearls Publishing. 2021. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK448209/.

3. Sturrock RR. Light microscopic identification of immature glial cells in semithin sections of the developing mouse corpus callosum. J Anat. 1976;122(3):521–37.

4. Salzer JL, Zalc B. Myelination. Curr Biol. 2016;26(20):R971–5. doi: https://doi.org/10.1016/j.cub.2016.07.074.

5. Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G. White matter injury in ischemic stroke. Prog Neurobiol. 2016;141:45–60. doi: https://doi.org/10.1016/j.pneurobio.2016.04.005.

6. Sengupta P. The laboratory rat: Relating its age with human’s. Int J Prev Med. 2013;4(6):624–30.

7. Gibb R, Kolb B. Brain plasticity in the adolescent brain. In: Benasich AA, Ribary U, organizadores. Emergent Brain Dynamics: Prebirth to Adolescence. Cambridge: The MIT Press; 2018. p. 143–60. (Strüngmann Forum Reports; 25).

8. Grillon C, Duncko R, Covington MF, Kopperman L, Kling MA. Acute stress potentiates anxiety in humans. Biol Psychiatry. 2007;62(10):1183-86. doi: https://dx.doi.org/10.1016%2Fj.biopsych.2007.06.007.

9. Lebel C, Deoni S. The development of brain white matter microstructure. Neuroimage. 2018;182(1):207–18. doi: https://doi.org/10.1016/j.neuroimage.2017.12.097.

10. Sánchez MM, Hearn EF, Do D, Rilling JK, Herndon JG. Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys. Brain Res. 1998;812(1–2):38–49. doi: https://doi.org/10.1016/s0006-8993(98)00857-9.

11. Coplan JD, Kolavennu V, Abdallah CG, Mathew SJ, Perera TD, Pantol G, et al. Patterns of anterior versus posterior white matter fractional anistotropy concordance in adult nonhuman primates: Effects of early life stress. J Affect Disord. 2016;192:167–75. doi: https://doi.org/10.1016/j.jad.2015.11.049.

12. Matsusue Y, Horii-Hayashi N, Kirita T, Nishi M. Distribution of Corticosteroid Receptors in Mature Oligodendrocytes and Oligodendrocyte Progenitors of the Adult Mouse Brain. J Histochem Cytochem. 2014;62(3):211–26. doi: https://doi.org/10.1369/0022155413517700.

13. Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992;588(2):341–5. doi: https://doi.org/10.1016/0006-8993(92)91597-8.

14. Blanchard RJ, Nikulina JN, Sakai RR, McKittrick C, McEwen B, Blanchard DC. Behavioral and endocrine change following chronic predatory stress. Physiol Behav. 1998;63(4):561–9. doi: https://doi.org/10.1016/s0031-9384(97)00508-8.

15. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 5th ed. Cambridge: Academic Press; 2004.

16. Kato KT, Melo SR de, Dada MEG, Barbosa CP. Efeitos do estresse físico e psicológico juvenil sobre a glândula suprarrenal em ratos adultos. Saude e pesqui (Impr). 2020;13(1):53–61. doi: https://doi.org/10.17765/2176-9206.2020v13n1p53-61.

17. Saber EA, Abd El Aleem MM, Aziz NM, Ibrahim RA. Physiological and structural changes of the lung tissue in male albino rat exposed to immobilization stress. J Cell Physiol. 2019;234(6):9168–83. doi: https://doi.org/10.1002/jcp.27594.

18. Miyata S, Koyama Y, Takemoto K, Yoshikawa K, Ishikawa T, Taniguchi M, et al. Plasma corticosterone activates SGK1 and induces morphological changes in oligodendrocytes in corpus callosum. PLoS One. 2011;6(5):e19859. doi: https://doi.org/10.1371/journal.pone.0019859.

19. Thamizhoviya G, Vanisree AJ. Enriched environment modulates behavior, myelination and augments molecules governing the plasticity in the forebrain region of rats exposed to chronic immobilization stress. Metab Brain Dis. 2019;34(3):875–87. doi: https://doi.org/10.1007/s11011-018-0370-8.

20. Zhang H, Yan G, Xu H, Fang Z, Zhang J, Zhang J, et al. The recovery trajectory of adolescent social defeat stress-induced behavioral, 1H-MRS metabolites and myelin changes in Balb/c mice. Sci Rep. 2016;6:27906. doi: https://doi.org/10.1038/srep27906.

21. Breton JM, Barraza M, Hu KY, Frias SJ, Long KLP, Kaufer D. Juvenile exposure to acute traumatic stress leads to long-lasting alterations in grey matter myelination in adult female but not male rats. Neurobiol Stress. 2021;14:100319. doi: https://doi.org/10.1016/j.ynstr.2021.100319.

22. Chetty S, Friedman AR, Taravosh-Lahn K, Kirby ED, Mirescu C, Guo F, et al. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry. 2014;19(12):1275–83. doi: https://doi.org/10.1038/mp.2013.190.

23. Kurokawa K, Tsuji M, Takahashi K, Miyagawa K, Mochida-Saito A, Takeda H. Leukemia Inhibitory Factor Participates in the Formation of Stress Adaptation via Hippocampal Myelination in Mice. Neuroscience. 2020;446:1–13. doi: https://doi.org/10.1016/j.neuroscience.2020.08.030.

Published
2022-04-29
Section
Artigos Originais