MAXIMIZING SECOND GENERATION ETHANOL FROM BIOMASS

Authors

DOI:

https://doi.org/10.17765/2176-9168.2024v17n.Especial.e12577%20

Keywords:

Sugarcane Bagasse, Physical Pre-treatment, Microwave, Ultrasound, Biofuel

Abstract

In recent years, there has been a growing national interest in fuel ethanol production due to its renewable nature. The conversion of biomass into ethanol has emerged as a globally researched and promising alternative, particularly in the fields of electricity generation and liquid biofuel production. Second-generation ethanol, derived from lignocellulosic biomass, is obtained through advanced chemical processes or biotechnology with the aim of breaking down cellulose into fermentable sugars. This study aimed to investigate pre-treatments using ultrasound and microwaves to hydrolyze sugarcane bagasse. Samples of sugarcane bagasse were washed, dried, suspended in acidic solution (1 and 0.1 M) or distilled water, and subjected to ultrasound and microwave treatment for varying exposure times ranging from 10 to 30 minutes. The materials were then filtered, washed, and fermented until reaching 1 °Brix. Distillation was performed after fermentation using a simple distiller. Prior to fermentation, samples were analyzed for reducing and total reducing sugars, as well as hydroxymethylfurfural, while alcohol content was measured post-fermentation. Treatments were conducted in four repetitions. The results showed that microwave pre-treatments with water or 0.1M acidic solution produced musts with higher sugar content, resulting in more alcoholic distillates. However, ultrasound was ineffective in sugar release, rendering alcoholic fermentation unfeasible. These findings underscore the critical role of selecting the appropriate pre-treatment method for achieving efficient second-generation ethanol production from lignocellulosic biomass.

Author Biographies

Maíra Rodrigues Uliana, Universidade do Oeste Paulista / UNOESTE

Doutora em Agronomia pela Faculdade de Ciências Agronômicas (UNESP). Docente do Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional da Universidade do Oeste Paulista, Unoeste, Presidente Prudente (SP), Brasil.

Lavínia Quélrili Cunha Soares, Universidade do Oeste Paulista / UNOESTE

Mestranda do Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional da Universidade do Oeste Paulista, Unoeste, Presidente Prudente (SP), Brasil.

Mylena Aparecida Ferreira da Silva, Universidade do Oeste Paulista / UNOESTE

Bachelor's degree in Chemistry and master's student in the Postgraduate Program in Environment and Regional Development at the University of Western São Paulo - PPG MADRE Unoeste Presidente Prudente - SP, Brazil

Hálim Felipe Plínio Souza, Universidade do Oeste Paulista / UNOESTE

Bachelor's degree in Chemistry and master's student in the Graduate Program in Environment and Regional Development at the University of Western São Paulo - PPG MADRE Unoeste Presidente Prudente - SP, Brazil

Sérgio Marques Costa, Universidade do Oeste Paulista / UNOESTE

PhD Professor of the Graduate Program in Environment and Regional Development at the University of Western São Paulo - PPG MADRE Unoeste Presidente Prudente - SP, Brazil

Alba Regina Azevedo Arana, Universidade do Oeste Paulista / UNOESTE

PhD Professor of the Graduate Program in Environment and Regional Development at the University of Western São pAulo - PPG MADRE Unoeste Presidente Prudente - SP, Brazil

References

ADEWUYI, Y. G. Sonochemistry: environmental science and engineering applications. Industrial & Engineering Chemistry Research, v. 40, n. 22, p. 4681-4715, 2001. https://doi.org/10.1021/ie010096l

AFEDZI, A. E. K.; Parakulsuksatid, P. Recent advances in process modifications of simultaneous saccharification and fermentation (SSF) of lignocellulosic biomass for bioethanol production. Biocatalysis and Agricultural Biotechnology, p. 102961, 2023. https://doi.org/10.1016/j.bcab.2023.102961

ARAÚJO, D. F. C.; SOBRINHO, F. L. A. O futuro dos biocombustíveis: Análise do cenário atual e perspectivas para o setor no Brasil. Geopauta, v. 7, p. e12766-e12766, 2023. https://doi.org/10.22481/rg.v7.e2023.e12766

BADIEI, M.; ASIM, N.; JAHIM, J. M.; SOPIAN, K. Comparison of Chemical Pretreatment Methods for Cellulosic Biomass. APCBEE Procedia, v. 9, p. 170-174, 2014. https://doi.org/10.1016/j.apcbee.2014.01.030

BAIG, K. S.; WU, J.; TURCOTTE, G. Future prospects of delignification pretreatments for the lignocellulosic materials to produce second generation bioethanol. International Journal of Energy Research, v. 43, n. 4, p. 1411-1427, 2019. https://doi.org/10.1002/er.4292

BALAT, M.; BALAT, H.; ÖZ, C. Progress in bioethanol processing. Progress in Energy and Combustion Science, v. 34, n. 5, p. 551-573, 2008. https://doi.org/10.1016/j.pecs.2007.11.001

BINOD, P.; SATYANAGALAKSHMI, K.; SINDHU, R.; JANU, K. U.; SUKUMARAN, R. K.; PANDEY, A. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, v. 36, n. 2, p. 466-470, 2010. https://doi.org/10.1016/j.renene.2011.06.007

BIZERRA, A. M. C.; QUEIROZ, J. L. A. DE; COUTINHO, D. A. M. O impacto ambiental dos combustíveis fósseis e dos biocombustíveis: as concepções de estudantes do ensino médio sobre o tema. Revista Brasileira de Educação Ambiental, v. 13, n. 3, p. 299-315, 2018.

CAMARGOS, C. H. M.; SILVA, R. A. P.; CSORDAS, Y.; SILVA, L. L.; REZENDE, C. A. Experimentally designed corn biomass fractionation to obtain lignin nanoparticles and fermentable sugars, Industrial Crops and Products, v. 140, p. 111649, 2019. https://doi.org.10.1016/j.indcrop.2019.111649

DUQUE, A.; ÁLVAREZ, C.; DOMÉNECH, P.; MANZANARES, P.; MORENO, A. D. Advanced bioethanol production: From novel raw materials to integrated biorefineries. Processes, v. 9, n. 2, p. 206, 2021. https://doi.org/10.3390/pr9020206

FAZZI, L. R.; SIMÕES, A. F.; ALMEIDA, P. S.; OLIVEIRA, B. D. A regulação de biocombustíveis no Brasil e nos EUA no contexto da mitigação das mudanças climáticas e do correlato Acordo de Paris. Revista Gestão & Sustentabilidade Ambiental, v. 9, p. 104-119, 2020. https://doi.org/10.19177/rgsa.v9e02020104-119

FERREIRA, J. Etanol de segunda geração: definição e perspectivas. Revista Conexão Eletrônica, v. 12, p. 11, 2015.

GALBE, M.; ZACCHI, G. Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. In: OLSSON, L. (Ed.). Biofuels. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. v. 108, p. 41-65. https://doi.org/10.1007/10_2007_070

GOGATE, P. R.; PANDIT, A. B. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, v. 8, n. 3-4, p. 501-551, 2014. https://doi.org/10.1016/S1093-0191(03)00032-7

INSTITUTO ADOLFO LUTZ. Normas Analíticas do Instituto Adolfo Lutz. Métodos físico-químicos para análises de alimentos. 4ª ed. (1ª Edição digital), 2008. 1020 p.

KUMAR, P.; BARRETT, D. M.; DELWICHE, M. J.; STROEVE, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, v. 48, n. 8, 2011. https://doi.org/10.1021/ie801542g

KUSTER MORO, M.; SPOSINA, R.; SILVA, A. S.; FUJIMOTO, M. D.; BON, E.P.S; MELO JR., P. A.; Secchi, A. R. Pré-tratamento da biomassa de cana-de-açúcar por extrusão com dupla-rosca. In: Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassa. Anais..., 5 set. 2015.

LARA-SERRANO, M.; SA?EZ ANGULO, F.; NEGRO, M. J.; MORALES-DELA ROSA, S.; CAMPOS-MARTIN, J. M.; FIERRO, J. L. Second-generation bioethanol production combining simultaneous fermentation and saccharification of IL-pretreated barley straw. ACS Sustainable Chemistry & Engineering, v. 6, n. 5, p. 7086-7095, 2018. https://doi.org/10.1021/acssuschemeng.8b00953

LEI, H.; CYBULSKA, I.; JULSON, J. Hydrothermal Pretreatment of Lignocellulosic Biomass and Kinetics. Journal of Sustainable Bioenergy Systems, v. 3, n. 4, p. 250-259, 2013. http://dx.doi.org/10.4236/jsbs.2013.34034

MATSAKAS, L.; RAGHAVENDRAN, V.; YAKIMENKO, O.; PERSSON, G.; OLSSON, E.; ROVA, U.; CHRISTAKOPOULOS, P. Lignin-first biomass fractionation using a hybrid organosolv–steam explosion pretreatmet technology improves the saccharification and fermentability of spruce biomass. Bioresource technology, v. 273, p. 521-528, 2019. https://doi.org/10.1016/j.biortech.2018.11.055

MOHAPATRA, S.; MISHRA, C.; BEHERA, S. S.; THATOI, H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review. Renewable and Sustainable Energy Reviews, v. 78, p. 1007-1032, 2017. https://doi.org/10.1016/j.rser.2017.05.026

NELSON, N. A photometric adaptation of Somogyi method for determination of glucose. Journal of Biologic Chemistry, v. 153, n. 2, p. 375-380, 1960. https://doi.org/10.1016/S0021-9258(18)71980-7

OLIVEIRA, L. R. M. Estudo de alternativas de pré-tratamento e hidrólise do bagaço e palha de cana-de-açúcar para obtenção de etanol a partir de celulose, Tese de Doutorado, Universidade de São Paulo, 123p., 2012.

PRADHAN, D.; TSEGAYE, B.; MATHEW, S.; JAISWAL, S.; JAISWAL, A. Ultrasound-Assisted Pretreatment of Lignocellulosic Biomass for Bioethanol Production, pp.365-387, 2023. In: Konur, O. (ed.) Bioethanol Fuel Production Processes, 1 ed., CRC Press: Boca Raton, 2023. https://doi.org/10.1201/9781003226536-24

SANSEVERINO, A. M. Microondas em síntese orgânica. Quimica Nova, v. 25, n. 4, p. 660–667, 2002. https://doi.org/10.1590/S0100-40422002000400022

SATARI, B.; KARIMI, K.; KUMAR, R. Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustainable energy & fuels, v. 3, n. 1, p. 11-62, 2019. https://doi.org/10.1039/C8SE00287H

TAYYAB, M.; NOMAN, A.; ISLAM, W.; WAHEED, S.; ARAFAT, Y.; ALI, F.; LIN, W. Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: a review. Applied Ecology & Environmental Research, v. 16, n. 1, 2018. http://dx.doi.org/10.15666/aeer/1601_225249

WANG, X. FANG, G.; HU, C.; DU, T. Application of ultrasonic waves in activation of microcrystalline cellulose. Journal of applied polymer science, v. 109, n. 5, p. 2762-2767, 2008. https://doi.org/10.1002/app.27975

ZHANG, S.; KESHWANI, D. R.; XU, Y.; HANNA, M. A. Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification, Industrial Crops and Products, v. 37, p. 352-357, 2012. https://doi.org/10.1016/J.INDCROP.2011.12.001

ZHANG, Y.; CAI, D.; YONG, Q.; YU, S. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior. Bioresource Technology, v. 256, p. 90-96, 2018. https://doi.org/10.1016/j.biortech.2017.12.022

ZHAO, X.; CHENG, K.; LIU, D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, v. 101, n. 20, p. 8277-8294, 2017. https://doi.org/10.1007/s00253-009-1883-1

ZLOTORZYNSKI, A. The Application of Microwave Radiation to Analytical and Environmental Chemistry. Critical Reviews in Analytical Chemistry, v. 25, n. 1, p. 43-76, 1995. https://doi.org/10.1080/10408349508050557

Published

2024-12-17

How to Cite

Uliana, M. R., Soares, L. Q. C., Silva, M. A. F. da, Souza, H. F. P., Costa, S. M., & Arana, A. R. A. (2024). MAXIMIZING SECOND GENERATION ETHANOL FROM BIOMASS. Revista Em Agronegócio E Meio Ambiente, 17, e12577. https://doi.org/10.17765/2176-9168.2024v17n.Especial.e12577