Spirulina platensis in livestock wastewater bioremediation: pollution control by obtaining macromolecules

Authors

DOI:

https://doi.org/10.17765/2176-9168.2025v18e12739%20

Keywords:

Bioremediation, Bioresource, Carbon assimilation, Photosynthesis

Abstract

Esta pesquisa avaliou o cultivo da microalga Spirulina platensis DRH 20 em fotobiorreatores horizontais operados em batelada por 8 dias sob duas intensidades luminosas (150 e 300 ?mol m?² s?¹). A maior irradiação resultou em melhor desempenho do cultivo, com taxa de crescimento específico de 0,35 dia?¹ e tempo de duplicação de 2,1 dias. A biomassa seca variou de 2,2 a 6,5 g L?¹, com produtividade de 0,08 a 0,56 g L?¹ dia?¹ e produtividade por área de 50 g m?² dia?¹. A biofixação de CO? apresentou valores entre 128 e 882 mg L?¹ dia?¹, demonstrando o potencial da microalga para mitigação de emissões. Em relação ao tratamento do efluente, foram obtidas remoções de 16,3 a 77% de DBO? e de 12,6 a 61,6% de DQO; para ST, SST e SSV, as remoções foram de 71 a 80%, 79 a 84% e 87 a 88%, respectivamente. A remoção de nutrientes também foi expressiva, com 33 a 98% de NH??, 20 a 96% de nitrogênio orgânico e 35 a 90% de Pt. Dessa forma, o cultivo de S. platensis demonstrou ser eficiente na biorremediação do efluente, permitindo simultânea produção de biomassa com potencial econômico para síntese de macromoléculas de interesse industrial.

Author Biographies

Denise Salvador de Souza, Universidade Federal Rural do Rio de Janeiro

Engenheira Agrícola e Ambiental da Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica (RJ), Brasil.

Mônica Silva dos Santos, Universidade Federal Rural do Rio de Janeiro

Discente de Mestrado do Programa de Pós-graduação em Engenharia Agrícola e Ambiental da Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica (RJ), Brasil.

Henrique Vieira de Mendonça, Universidade Federal Rural do Rio de Janeiro

Doutor em Biodiversidade e Conservação da Natureza pela Universidade Federal de Juiz de Fora (UFJF). Professor do Programa de Pós-graduação em Engenharia Agrícola e Ambiental da Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica (RJ), Brasil.

References

AL HINAI, M.; AL KALBANI, A.; AL RUBKHI, B.; AL KALBANI, U.; WALKE, S. Protein extraction from spirulina platensis. Int J Innov Technol Explor Eng 8:1524–1530, 2019. DOI: https://doi.org/10.35940/ijitee.L3110.1081219.

ALMOMANI, F.; JUDD, S.; BHOSALE, R. R.; SHURAIR, M.; ALJAML, K.; KHRAISHEH, M. Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process Saf Environ Prot 124:240–250, 2019. DOI: https://doi.org/10.1016/j.psep.2019.02.009.

ANDRADE, M. R.; COSTA, J. A. V. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264:130–134, 2007. DOI: https://doi.org/10.1016/j.aquaculture.2006.11.021.

American Public Health Association, American Water Works Association, Water Environment Federation - APHA. Standard Methods for the Examination of Water and Waste Water (22nd ed.). Washington DC, 2012.

ARAGAW, T. A.; ASMARE, A. M. Phycoremediation of textile wasterwater using indigenous microalgae. Water Practice & Techonology, 13(2), 274-284, 2018. DOI: https://doi.org/10.2166/wpt.2018.037.

BARROS, A. I.; GONÇALVES, A. L.; SIMÕES, M.; Pires, J. C. M. Harvesting techniques applied to microalgae: A review. Renew Sustain Energy Rev 41:1489–1500, 2015. DOI: https://doi.org/10.1016/j.rser.2014.09.037.

BHALAMURUGAN, G. L.; VALERIE, O.; MARK, L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environ Eng Res 23:229–241, 2018. DOI: https://doi.org/10.4491/eer.2017.220.

BORGES, J. A.; ROSA, G. M.; MEZA, L. H. R.; HENRARD, A. A.; SOUZA, M. R. A. Z; COSTA, J.A.V. Spirulina sp. LEB-18 culture using effluent from the anaerobic digestion. Brazilian J Chem Eng 30:277-287, 2013. DOI: https://doi.org/10.1590/S0104-66322013000200006.

BRAGA, V. S.; MOREIRA, J. B.; COSTA, J. A. V.; MORAIS, M. G. Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply. Int J Biol Macromol 123:1241–1247, 2019. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.037.

CHEN, J.; WANG, Y.; BENEMANN, J. R.; ZHANG, X.; HU, H.; QIN, S. Microalgal industry in China: challenges and prospects. J Appl Phycol 28:715-725, 2016. DOI: https://doi.org/10.1007/s10811-015-0720-4.

CHENG, D. L.; NGO, H. H.; GUO, W. S.; CHANG, S. W.; NGUYEN, D. D.; KUMAR, S. M. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresour Technol 275:109–122, 2019. DOI: https://doi.org/10.1016/j.biortech.2018.12.019.

CHISTI, Y. Constraints to commercialization of algal fuels. J Biotechnol 167:201–214, 2013. DOI: https://doi.org/10.1016/j.jbiotec.2013.07.020.

CHOJNACKA, K.; NOWORYTA, A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34:461–465, 2004. DOI: https://doi.org/10.1016/j.enzmictec.2003.12.002.

COSTA, J.A.V.; FREITAS, B.C.B.; ROSA, G.M. et al.; MORAES, L.; MORAIS, M.G.; MITCHELL, B.G. Operational and economic aspects of Spirulina-based biorefinery. Bioresour Technol 292:121946, 2019. DOI: https://doi.org/10.1016/j.biortech.2019.121946.

DAGNAISSER, L. S.; Santo,s M. G. B.; Rita A. V. S.; CARDOSO, J. C.; CARVALHO, D. F.; MENDONÇA, H. V. Microalgae as Bio-fertilizer: a New Strategy for Advancing Modern Agriculture, Wastewater Bioremediation, and Atmospheric Carbon Mitigation. Water Air Soil Pollut 233:, 2022. DOI: https://doi.org/10.1007/s11270-022-05917-x

DUARTE, J. H.; FANKA, L. S.; COSTA J. A. V. CO2 Biofixation via Spirulina sp. Cultures: Evaluation of Initial Biomass Concentration in Tubular and Raceway Photobioreactors. Bioenergy Res 13:939–943, 2020. DOI: https://doi.org/10.1007/s12155-020-10117-8

DUBOIS, M.; GILLES, K. A.; HAMILTON, J. K.; REBERS, P. A.; SMITH, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem 28:350–356, 1956. DOI: https://doi.org/10.1021/ac60111a017.

GARCÍA, J. L., VICENTE, M.; GALÁN, B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 10:1017–1024, 2017. DOI: https://doi.org/10.1111/1751-7915.12800

GROBBELAAR, J. U. From laboratory to commercial production: A case study of a spirulina (arthrospira) facility in Musina, South Africa. Journal of Applied Phycology, 21(5), 523-527, 2009. DOI: https://doi.org/10.1007/s10811-008-9378-5

GUPTA, P. L.; LEE S. M.; CHOI, H. J. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31:1409–1417, 2015. DOI: https://doi.org/10.1007/s11274-015-1892-4.

HENA, S.; ZNAD, H.; HEONG, K. T.; JUDD, S. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res 128:267–277, 2018. DOI: https://doi.org/10.1016/j.watres.2017.10.057.

IEA BIOENERGY INTER-TASK STRATEGIC PROJECTHTTPS. State of Technology Review - Algae Bioenergy, 2017. Disponível em: http://www.ieabioenergy.com/wp-content/uploads/2017/02/IEA-Bioenergy-Algae-report-update-Final-template-20170131.pdf. Acesso: 13. Nov. 2023.

LAM, M.K.; LEE, K.T. Bioethanol Production from Microalgae. Elsevier Inc, 2015.

LOMEU, A. A.; OLIVEIRA MOREIRA, O. B.; OLIVEIRA, M. A. L.; MENDONÇA, H. V. Applying Ozone in Cattle Wastewater to Maximize Lipid Production in Microalgae Biomass. Bioenergy Res. 2023. DOI: https://doi.org/10.1007/s12155-023-10564-z.

LU, Y. M.; XIANG, W. Z.; WEN, Y. H. Spirulina (Arthrospira) industry in Inner Mongolia of China: Current status and prospects. J Appl Phycol 23:265–269, 2011. DOI: https://doi.org/10.1007/s10811-010-9552-4.

MARKOU, G.; CHATZIPAYlLIDIS, I.; GEORGAKAKIS, D. Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour Technol 112:234–241, 2012. DOI: https://doi.org/10.1016/j.biortech.2012.02.098.

MATA, T. M.; MARTINS, A. A.; CAETANO, N. S. Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 14:217–232, 2010. DOI: https://doi.org/10.1016/j.rser.2009.07.020.

MATA, T. M.; MELO, A. C.; SIMÕES, M.; CAETANO, N. S. Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158, 2012. DOI: https://doi.org/10.1016/j.biortech.2011.12.109.

MATOS, Â. P.; SILVA, T.; SANT’ANNA, E. S. The Feasibility of Using Inland Desalination Concentrate (DC) as an Alternative Substrate for Spirulina platensis Mass Cultivation. Waste and Biomass Valorization 12:3193–3203, 2021. DOI: https://doi.org/10.1007/s12649-020-01233-9.

MENDONÇA, H. V.; OMETTO, J. P. H. B.; OTENIO, M. H. Production of Energy and Biofertilizer from Cattle Wastewater in Farms with Intensive Cattle Breeding. Water Air Soil Pollut 228:, 2017. DOI: https://doi.org/10.1007/s11270-017-3264-1.

MENDONÇA, H. V.; OMETTO, J. P. H. B.; OTENIO, M. H.; MARQUES, I. P. R.; REIS, A. J. D. Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation. Sci Total Environ 633:1–11, 2018. DOI: https://doi.org/10.1016/j.scitotenv.2018.03.157.

MENDONÇA, H. V.; ASSEMANY, P.; ABREU, M.; COUTO, E.; MACIEL, A. M.; DUARTE, R. L.; SANTOS, M. G. B.; REIS, A. Microalgae in a global world: new solutions for old problems? Renewable Energy, 2020. DOI: https://doi.org/https://doi.org/10.1016/j.renene.2020.11.014.

MCCARTY, M. F.; DINICOLANTONIO, J. J. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis 63:383–385, 2020. DOI: https://doi.org/10.1016/j.pcad.2020.02.007.

MOHAMMADI, M.; MOWLA, D.; ESMAEILZADEH, F.; GHASEMI, Y. Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: A batch study. J Environ Chem Eng 6:2812–2820, 2018. DOI: https://doi.org/10.1016/j.jece.2018.04.037.

MOLINA GRIMA, E.; BELARBI, E. H.; ACIÉN FERNÁNDEZ, F. G.; MEDINA ROBLES, A.; CHISTI, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol Adv 20:491–515, 2003. DOI: https://doi.org/10.1016/S0734-9750(02)00050-2.

MOLINA GRIMA, E.; FERNÁNDEZ SEVILLA, J.M.; SÁNCHEZ PÉREZ, J.A.; GARCÍA CAMACHO, F. A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45:59–69, 1996. DOI: https://doi.org/10.1016/0168-1656(95)00144-1.

MORAIS, M. G.; RADMANN, E. M.; ANDRADE, M. R.; TEIXEIRA, G. G.; BRUSCH, L. R. F.; COSTA, J. A. V. Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture 294:60–64, 2009. DOI: https://doi.org/10.1016/j.aquaculture.2009.05.009.

NAYAK, M.; KAREMORE, A.; SEN, R. Sustainable valorization of flue gas CO2 and wastewater for the production of microalgal biomass as a biofuel feedstock in closed and open reactor systems. RSC Adv 6:9111–91120, 2016. DOI: https://doi.org/10.1039/c6ra17899e.

PANCHA, I.; CHOKSHI, K.; MAURYA, R.; BHATTAHARYA, S.; BACHANI, P.; MISHRA, S. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production. Bioresour Technol 204:9–16, 2016. DOI: https://doi.org/10.1016/j.biortech.2015.12.078.

PRAJAPATI, S.K.; CHOUDHARY, P.; MALIK, A.; VIJAY, V.K. Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresour Technol 167:260–268, 2014. DOI: https://doi.org/10.1016/j.biortech.2014.06.038.

QIN, L.; SHU, Q.; WANG, Z.M.; SHANG, G.; ZHU, S.; XU, J.; ZHU, L.; ZHENHONGYUAN. Cultivation of chlorella vulgaris in dairy wastewater pretreated by UV irradiation and sodium hypochlorite. Appl Biochem Biotechnol 172:1121–1130, 2014. DOI: https://doi.org/10.1007/s12010-013-0576-5.

REMPEL, A.; SOUZA SOSSELLA, F.; MARGARITES, A. C.; ASTOLFI, A. L.; STEINMETZ, R. L. R.; KUNZ, A.; TREICHEK, H.; COLLA, L. M. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: An energy efficient approach. Bioresour Technol 288:, 2019. DOI: https://doi.org/10.1016/j.biortech.2019.121588.

RIBEIRO, D. M.; MINILLO, A.; SILVA, C. A. de A.; FONSECA, G. G. Characterization of different microalgae cultivated in open ponds. Acta Sci - Technol 41:6–11, 2019. DOI: https://doi.org/10.4025/actascitechnol.v41i1.37723.

SANTOS, M. G. B.; DUARTE, R. L.; MACIEL, A. M.; ABREU, M.; REIS, A.; MENDONÇA, H. V. Microalgae Biomass Production for Biofuels in Brazilian Scenario: A Critical Review. Bioenergy Res 14:23–42, 2021. DOI: https://doi.org/10.1007/s12155-020-10180-1.

SONI, R. A.; SUDHAKAR, K.; RANA, R. S. Spirulina – From growth to nutritional product: A review. Trends Food Sci Technol 69:157–171, 2017. DOI: https://doi.org/10.1016/j.tifs.2017.09.010.

SOUZA, D. S.; LOMEU, A.; DE OLIVEIRA O. B. M.; OLIVEIRA, M. A. L.; MENDONÇA, H. V. New methods to increase microalgae biomass in anaerobic cattle wastewater and the effects on lipids production. Biomass and Bioenergy 176:106915, 2023. DOI: https://doi.org/10.1016/j.biombioe.2023.106915.

SOUZA, D. S.; MACIEL, A. M.; OTENIO, M. H.; MENDONÇA, H. V. Optimization of Ozone Application in Post-Treatment of Cattle Wastewater from Organic Farms. Water Air Soil Pollut 231:1–10, 2020. DOI: https://doi.org/10.1007/s11270-020-04736-2.

TANG, D. Y. Y.; KHOO, K. S.; CHEW, K. W.; TAO, Y.; HO, S.H.; SHOW, P. L. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997, 2020. DOI: https://doi.org/10.1016/j.biortech.2020.122997.

TOYOSHIMA, M.; AIKAWA, S.; YAMAGISHI, T.; KONDO, A.; KAWAI, H. A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39. J Appl Phycol 27:2191–2202, 2015. DOI: https://doi.org/10.1007/s10811-014-0484-2.

VONSHAK, A.; LAORAWAT, S.; BUNNAG, B.; TANTICHAROEN, M. The effect of light availability on the photosynthetic activity and productivity of outdoor cultures of Arthrospira platensis (Spirulina). J Appl Phycol 26:1309–1315, 2014. DOI: https://doi.org/10.1007/s10811-013-0133-1.

YU, J. U.; KIM, H. W. Enhanced Microalgal Growth and Effluent Quality in Tertiary Treatment of Livestock Wastewater Using a Sequencing Batch Reactor. Water Air Soil Pollut 228:, 2017. DOI: https://doi.org/10.1007/s11270-017-3547-6.

ZARROUK, C. Contribution à l'étude d'une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de spirulina maxima. Universite des Paris, 1996.

ZEWDIE, D. T.; ALI, A. Y. Cultivation of microalgae for biofuel production: Coupling with sugarcane-processing factories. Energy Sustain Soc 10:1–16, 2020. DOI: https://doi.org/10.1186/s13705-020-00262-5.

ZHAI, J.; LI, X.; LI, W.; RAHAMAN, M. H.; ZHAO, Y.; WEI, B.; WEI, H. Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecol Eng 108:83–92, 2017. DOI: https://doi.org/10.1016/j.ecoleng.2017.07.023.

ZHANG, X. W.; ZHANG, Y. M.; CHEN, F. Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem 34:477–481, 1999. DOI: https://doi.org/10.1016/S0032-9592(98)00114-9.

ZHOU, Y.; SCHIDEMAN, L.; YU, G.; ZHANG, Y. A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci 6:3765–3779, 2013. DOI: https://doi.org/10.1039/c3ee24241b.

ZHU, L. D.; LI, Z. H.; GUO, D. B.; HUANG, F.; NUGROHO, Y.; XIA, K. Cultivation of Chlorella sp. with livestock waste compost for lipid production. Bioresour Technol 223:296–300, 2017. DOI: https://doi.org/10.1016/j.biortech.2016.09.094.

Downloads

Published

2025-12-30

How to Cite

Salvador de Souza, D., Santos, M. S. dos, & Mendonça, H. V. de. (2025). Spirulina platensis in livestock wastewater bioremediation: pollution control by obtaining macromolecules. Revista Em Agronegócio E Meio Ambiente, 18, e12739 . https://doi.org/10.17765/2176-9168.2025v18e12739

Issue

Section

MEIO AMBIENTE e TECNOLOGIA LIMPAS

Most read articles by the same author(s)