Spirulina platensis in livestock wastewater bioremediation: pollution control by obtaining macromolecules
DOI:
https://doi.org/10.17765/2176-9168.2025v18e12739%20Palabras clave:
Bioremediation, Bioresource, Carbon assimilation, PhotosynthesisResumen
Esta pesquisa avaliou o cultivo da microalga Spirulina platensis DRH 20 em fotobiorreatores horizontais operados em batelada por 8 dias sob duas intensidades luminosas (150 e 300 ?mol m?² s?¹). A maior irradiação resultou em melhor desempenho do cultivo, com taxa de crescimento específico de 0,35 dia?¹ e tempo de duplicação de 2,1 dias. A biomassa seca variou de 2,2 a 6,5 g L?¹, com produtividade de 0,08 a 0,56 g L?¹ dia?¹ e produtividade por área de 50 g m?² dia?¹. A biofixação de CO? apresentou valores entre 128 e 882 mg L?¹ dia?¹, demonstrando o potencial da microalga para mitigação de emissões. Em relação ao tratamento do efluente, foram obtidas remoções de 16,3 a 77% de DBO? e de 12,6 a 61,6% de DQO; para ST, SST e SSV, as remoções foram de 71 a 80%, 79 a 84% e 87 a 88%, respectivamente. A remoção de nutrientes também foi expressiva, com 33 a 98% de NH??, 20 a 96% de nitrogênio orgânico e 35 a 90% de Pt. Dessa forma, o cultivo de S. platensis demonstrou ser eficiente na biorremediação do efluente, permitindo simultânea produção de biomassa com potencial econômico para síntese de macromoléculas de interesse industrial.
Citas
AL HINAI, M.; AL KALBANI, A.; AL RUBKHI, B.; AL KALBANI, U.; WALKE, S. Protein extraction from spirulina platensis. Int J Innov Technol Explor Eng 8:1524–1530, 2019. DOI: https://doi.org/10.35940/ijitee.L3110.1081219.
ALMOMANI, F.; JUDD, S.; BHOSALE, R. R.; SHURAIR, M.; ALJAML, K.; KHRAISHEH, M. Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process Saf Environ Prot 124:240–250, 2019. DOI: https://doi.org/10.1016/j.psep.2019.02.009.
ANDRADE, M. R.; COSTA, J. A. V. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264:130–134, 2007. DOI: https://doi.org/10.1016/j.aquaculture.2006.11.021.
American Public Health Association, American Water Works Association, Water Environment Federation - APHA. Standard Methods for the Examination of Water and Waste Water (22nd ed.). Washington DC, 2012.
ARAGAW, T. A.; ASMARE, A. M. Phycoremediation of textile wasterwater using indigenous microalgae. Water Practice & Techonology, 13(2), 274-284, 2018. DOI: https://doi.org/10.2166/wpt.2018.037.
BARROS, A. I.; GONÇALVES, A. L.; SIMÕES, M.; Pires, J. C. M. Harvesting techniques applied to microalgae: A review. Renew Sustain Energy Rev 41:1489–1500, 2015. DOI: https://doi.org/10.1016/j.rser.2014.09.037.
BHALAMURUGAN, G. L.; VALERIE, O.; MARK, L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environ Eng Res 23:229–241, 2018. DOI: https://doi.org/10.4491/eer.2017.220.
BORGES, J. A.; ROSA, G. M.; MEZA, L. H. R.; HENRARD, A. A.; SOUZA, M. R. A. Z; COSTA, J.A.V. Spirulina sp. LEB-18 culture using effluent from the anaerobic digestion. Brazilian J Chem Eng 30:277-287, 2013. DOI: https://doi.org/10.1590/S0104-66322013000200006.
BRAGA, V. S.; MOREIRA, J. B.; COSTA, J. A. V.; MORAIS, M. G. Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply. Int J Biol Macromol 123:1241–1247, 2019. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.037.
CHEN, J.; WANG, Y.; BENEMANN, J. R.; ZHANG, X.; HU, H.; QIN, S. Microalgal industry in China: challenges and prospects. J Appl Phycol 28:715-725, 2016. DOI: https://doi.org/10.1007/s10811-015-0720-4.
CHENG, D. L.; NGO, H. H.; GUO, W. S.; CHANG, S. W.; NGUYEN, D. D.; KUMAR, S. M. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresour Technol 275:109–122, 2019. DOI: https://doi.org/10.1016/j.biortech.2018.12.019.
CHISTI, Y. Constraints to commercialization of algal fuels. J Biotechnol 167:201–214, 2013. DOI: https://doi.org/10.1016/j.jbiotec.2013.07.020.
CHOJNACKA, K.; NOWORYTA, A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34:461–465, 2004. DOI: https://doi.org/10.1016/j.enzmictec.2003.12.002.
COSTA, J.A.V.; FREITAS, B.C.B.; ROSA, G.M. et al.; MORAES, L.; MORAIS, M.G.; MITCHELL, B.G. Operational and economic aspects of Spirulina-based biorefinery. Bioresour Technol 292:121946, 2019. DOI: https://doi.org/10.1016/j.biortech.2019.121946.
DAGNAISSER, L. S.; Santo,s M. G. B.; Rita A. V. S.; CARDOSO, J. C.; CARVALHO, D. F.; MENDONÇA, H. V. Microalgae as Bio-fertilizer: a New Strategy for Advancing Modern Agriculture, Wastewater Bioremediation, and Atmospheric Carbon Mitigation. Water Air Soil Pollut 233:, 2022. DOI: https://doi.org/10.1007/s11270-022-05917-x
DUARTE, J. H.; FANKA, L. S.; COSTA J. A. V. CO2 Biofixation via Spirulina sp. Cultures: Evaluation of Initial Biomass Concentration in Tubular and Raceway Photobioreactors. Bioenergy Res 13:939–943, 2020. DOI: https://doi.org/10.1007/s12155-020-10117-8
DUBOIS, M.; GILLES, K. A.; HAMILTON, J. K.; REBERS, P. A.; SMITH, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem 28:350–356, 1956. DOI: https://doi.org/10.1021/ac60111a017.
GARCÍA, J. L., VICENTE, M.; GALÁN, B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 10:1017–1024, 2017. DOI: https://doi.org/10.1111/1751-7915.12800
GROBBELAAR, J. U. From laboratory to commercial production: A case study of a spirulina (arthrospira) facility in Musina, South Africa. Journal of Applied Phycology, 21(5), 523-527, 2009. DOI: https://doi.org/10.1007/s10811-008-9378-5
GUPTA, P. L.; LEE S. M.; CHOI, H. J. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31:1409–1417, 2015. DOI: https://doi.org/10.1007/s11274-015-1892-4.
HENA, S.; ZNAD, H.; HEONG, K. T.; JUDD, S. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res 128:267–277, 2018. DOI: https://doi.org/10.1016/j.watres.2017.10.057.
IEA BIOENERGY INTER-TASK STRATEGIC PROJECTHTTPS. State of Technology Review - Algae Bioenergy, 2017. Disponível em: http://www.ieabioenergy.com/wp-content/uploads/2017/02/IEA-Bioenergy-Algae-report-update-Final-template-20170131.pdf. Acesso: 13. Nov. 2023.
LAM, M.K.; LEE, K.T. Bioethanol Production from Microalgae. Elsevier Inc, 2015.
LOMEU, A. A.; OLIVEIRA MOREIRA, O. B.; OLIVEIRA, M. A. L.; MENDONÇA, H. V. Applying Ozone in Cattle Wastewater to Maximize Lipid Production in Microalgae Biomass. Bioenergy Res. 2023. DOI: https://doi.org/10.1007/s12155-023-10564-z.
LU, Y. M.; XIANG, W. Z.; WEN, Y. H. Spirulina (Arthrospira) industry in Inner Mongolia of China: Current status and prospects. J Appl Phycol 23:265–269, 2011. DOI: https://doi.org/10.1007/s10811-010-9552-4.
MARKOU, G.; CHATZIPAYlLIDIS, I.; GEORGAKAKIS, D. Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour Technol 112:234–241, 2012. DOI: https://doi.org/10.1016/j.biortech.2012.02.098.
MATA, T. M.; MARTINS, A. A.; CAETANO, N. S. Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 14:217–232, 2010. DOI: https://doi.org/10.1016/j.rser.2009.07.020.
MATA, T. M.; MELO, A. C.; SIMÕES, M.; CAETANO, N. S. Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158, 2012. DOI: https://doi.org/10.1016/j.biortech.2011.12.109.
MATOS, Â. P.; SILVA, T.; SANT’ANNA, E. S. The Feasibility of Using Inland Desalination Concentrate (DC) as an Alternative Substrate for Spirulina platensis Mass Cultivation. Waste and Biomass Valorization 12:3193–3203, 2021. DOI: https://doi.org/10.1007/s12649-020-01233-9.
MENDONÇA, H. V.; OMETTO, J. P. H. B.; OTENIO, M. H. Production of Energy and Biofertilizer from Cattle Wastewater in Farms with Intensive Cattle Breeding. Water Air Soil Pollut 228:, 2017. DOI: https://doi.org/10.1007/s11270-017-3264-1.
MENDONÇA, H. V.; OMETTO, J. P. H. B.; OTENIO, M. H.; MARQUES, I. P. R.; REIS, A. J. D. Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation. Sci Total Environ 633:1–11, 2018. DOI: https://doi.org/10.1016/j.scitotenv.2018.03.157.
MENDONÇA, H. V.; ASSEMANY, P.; ABREU, M.; COUTO, E.; MACIEL, A. M.; DUARTE, R. L.; SANTOS, M. G. B.; REIS, A. Microalgae in a global world: new solutions for old problems? Renewable Energy, 2020. DOI: https://doi.org/https://doi.org/10.1016/j.renene.2020.11.014.
MCCARTY, M. F.; DINICOLANTONIO, J. J. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis 63:383–385, 2020. DOI: https://doi.org/10.1016/j.pcad.2020.02.007.
MOHAMMADI, M.; MOWLA, D.; ESMAEILZADEH, F.; GHASEMI, Y. Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: A batch study. J Environ Chem Eng 6:2812–2820, 2018. DOI: https://doi.org/10.1016/j.jece.2018.04.037.
MOLINA GRIMA, E.; BELARBI, E. H.; ACIÉN FERNÁNDEZ, F. G.; MEDINA ROBLES, A.; CHISTI, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol Adv 20:491–515, 2003. DOI: https://doi.org/10.1016/S0734-9750(02)00050-2.
MOLINA GRIMA, E.; FERNÁNDEZ SEVILLA, J.M.; SÁNCHEZ PÉREZ, J.A.; GARCÍA CAMACHO, F. A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45:59–69, 1996. DOI: https://doi.org/10.1016/0168-1656(95)00144-1.
MORAIS, M. G.; RADMANN, E. M.; ANDRADE, M. R.; TEIXEIRA, G. G.; BRUSCH, L. R. F.; COSTA, J. A. V. Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture 294:60–64, 2009. DOI: https://doi.org/10.1016/j.aquaculture.2009.05.009.
NAYAK, M.; KAREMORE, A.; SEN, R. Sustainable valorization of flue gas CO2 and wastewater for the production of microalgal biomass as a biofuel feedstock in closed and open reactor systems. RSC Adv 6:9111–91120, 2016. DOI: https://doi.org/10.1039/c6ra17899e.
PANCHA, I.; CHOKSHI, K.; MAURYA, R.; BHATTAHARYA, S.; BACHANI, P.; MISHRA, S. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production. Bioresour Technol 204:9–16, 2016. DOI: https://doi.org/10.1016/j.biortech.2015.12.078.
PRAJAPATI, S.K.; CHOUDHARY, P.; MALIK, A.; VIJAY, V.K. Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresour Technol 167:260–268, 2014. DOI: https://doi.org/10.1016/j.biortech.2014.06.038.
QIN, L.; SHU, Q.; WANG, Z.M.; SHANG, G.; ZHU, S.; XU, J.; ZHU, L.; ZHENHONGYUAN. Cultivation of chlorella vulgaris in dairy wastewater pretreated by UV irradiation and sodium hypochlorite. Appl Biochem Biotechnol 172:1121–1130, 2014. DOI: https://doi.org/10.1007/s12010-013-0576-5.
REMPEL, A.; SOUZA SOSSELLA, F.; MARGARITES, A. C.; ASTOLFI, A. L.; STEINMETZ, R. L. R.; KUNZ, A.; TREICHEK, H.; COLLA, L. M. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: An energy efficient approach. Bioresour Technol 288:, 2019. DOI: https://doi.org/10.1016/j.biortech.2019.121588.
RIBEIRO, D. M.; MINILLO, A.; SILVA, C. A. de A.; FONSECA, G. G. Characterization of different microalgae cultivated in open ponds. Acta Sci - Technol 41:6–11, 2019. DOI: https://doi.org/10.4025/actascitechnol.v41i1.37723.
SANTOS, M. G. B.; DUARTE, R. L.; MACIEL, A. M.; ABREU, M.; REIS, A.; MENDONÇA, H. V. Microalgae Biomass Production for Biofuels in Brazilian Scenario: A Critical Review. Bioenergy Res 14:23–42, 2021. DOI: https://doi.org/10.1007/s12155-020-10180-1.
SONI, R. A.; SUDHAKAR, K.; RANA, R. S. Spirulina – From growth to nutritional product: A review. Trends Food Sci Technol 69:157–171, 2017. DOI: https://doi.org/10.1016/j.tifs.2017.09.010.
SOUZA, D. S.; LOMEU, A.; DE OLIVEIRA O. B. M.; OLIVEIRA, M. A. L.; MENDONÇA, H. V. New methods to increase microalgae biomass in anaerobic cattle wastewater and the effects on lipids production. Biomass and Bioenergy 176:106915, 2023. DOI: https://doi.org/10.1016/j.biombioe.2023.106915.
SOUZA, D. S.; MACIEL, A. M.; OTENIO, M. H.; MENDONÇA, H. V. Optimization of Ozone Application in Post-Treatment of Cattle Wastewater from Organic Farms. Water Air Soil Pollut 231:1–10, 2020. DOI: https://doi.org/10.1007/s11270-020-04736-2.
TANG, D. Y. Y.; KHOO, K. S.; CHEW, K. W.; TAO, Y.; HO, S.H.; SHOW, P. L. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997, 2020. DOI: https://doi.org/10.1016/j.biortech.2020.122997.
TOYOSHIMA, M.; AIKAWA, S.; YAMAGISHI, T.; KONDO, A.; KAWAI, H. A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39. J Appl Phycol 27:2191–2202, 2015. DOI: https://doi.org/10.1007/s10811-014-0484-2.
VONSHAK, A.; LAORAWAT, S.; BUNNAG, B.; TANTICHAROEN, M. The effect of light availability on the photosynthetic activity and productivity of outdoor cultures of Arthrospira platensis (Spirulina). J Appl Phycol 26:1309–1315, 2014. DOI: https://doi.org/10.1007/s10811-013-0133-1.
YU, J. U.; KIM, H. W. Enhanced Microalgal Growth and Effluent Quality in Tertiary Treatment of Livestock Wastewater Using a Sequencing Batch Reactor. Water Air Soil Pollut 228:, 2017. DOI: https://doi.org/10.1007/s11270-017-3547-6.
ZARROUK, C. Contribution à l'étude d'une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de spirulina maxima. Universite des Paris, 1996.
ZEWDIE, D. T.; ALI, A. Y. Cultivation of microalgae for biofuel production: Coupling with sugarcane-processing factories. Energy Sustain Soc 10:1–16, 2020. DOI: https://doi.org/10.1186/s13705-020-00262-5.
ZHAI, J.; LI, X.; LI, W.; RAHAMAN, M. H.; ZHAO, Y.; WEI, B.; WEI, H. Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecol Eng 108:83–92, 2017. DOI: https://doi.org/10.1016/j.ecoleng.2017.07.023.
ZHANG, X. W.; ZHANG, Y. M.; CHEN, F. Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem 34:477–481, 1999. DOI: https://doi.org/10.1016/S0032-9592(98)00114-9.
ZHOU, Y.; SCHIDEMAN, L.; YU, G.; ZHANG, Y. A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci 6:3765–3779, 2013. DOI: https://doi.org/10.1039/c3ee24241b.
ZHU, L. D.; LI, Z. H.; GUO, D. B.; HUANG, F.; NUGROHO, Y.; XIA, K. Cultivation of Chlorella sp. with livestock waste compost for lipid production. Bioresour Technol 223:296–300, 2017. DOI: https://doi.org/10.1016/j.biortech.2016.09.094.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista em Agronegócio e Meio Ambiente

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
A Revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com o intuito de manter o padrão culto da língua, respeitando, porém, o estilo dos autores. As opiniões emitidas pelos autores são de sua exclusiva responsabilidade.Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizado pelo periódico é a licença Creative Commons Attribution
Creative Commons Atribuição 4.0 Internacional. São permitidos o compartilhamento (cópia e distribuição do material em qualquer meio ou formato) e adaptação (remixar, transformar, e criar a partir do trabalho, mesmo para fins comerciais), desde que lhe atribuam o devido crédito pela criação original.




