Effect of compost temperature on nutritional composition and migration of contaminant agents in PET bottles

Keywords: Aldehyde, Antimony, Organic fertilizer, Organic waste, Polyethylene phthalate

Abstract

Home compost in PET bottles (polyethylene phthalate) may significantly reduce the amount of organic waste generated in urban environments and it is an alternative in reduced spaces. The effect of compost temperature on nutritional composition, and the migration of antimony, acetaldehyde and formaldehyde to the compost produced are evaluated. In fact, studies indicate that, depending on storage conditions, PET bottles release the above-mentioned substances. Compost containers were prepared, featuring 4 parts of organic waste (fruit and vegetable peels and vegetable residues), soil and dried leaves, at 17°C, 27°C and 37°C. At the end of the composting process of approximately 35 days, compost and slurry were collected and analyzed for fertility and for possible contamination by antimony and aldehydes. The compound presented soil conditioning potential, with pH and nitrogen contents above the minimum concentrations required by specific legislation. Further, no antimony contamination was present regardless of the temperature, while there was a significant reduction in the concentrations of formaldehyde and acetaldehyde in the compost when compared to the initial material. Results show that pet bottle composting favored the decomposition and/or volatilization of aldehydes in the process.

Author Biographies

Maíra Menezes Penteado, Universidade Federal Fluminense – UFF
Mestre em Tecnologia Ambiental pelo Programa de Pós-graduação em Tecnologia Ambiental da Universidade Federal Fluminense (UFF), Volta Redonda (RJ), Brasil.
Fabiana Soares dos Santos, Universidade Federal Fluminense - UFF
Doutora em Agronomia/Ciência do Solo, docente do Programa de Pós-graduação em Tecnologia Ambiental da Universidade Federal Fluminense (UFF), Volta Redonda (RJ), Brasil.
Patricia Alves Carneiro, Universidade Federal Fluminense - UFF
Doutora em Química, docente do Programa de Pós-graduação em Tecnologia Ambiental da Universidade Federal Fluminense (UFF), Volta Redonda (RJ), Brasil.

References

ABBOUDI, M.; ODEH, A.; ALJOUMAA, K. Carbonyl compound leaching from polyethylene terephthalate into bottled water under sunlight exposure. Toxicological and Environmental Chemistry, v. 98, n. 2, p. 167-178, feb. 2016.

AL-OTOUM, F.; AL-GHOUTI, M. A.; COSTA JR, O. S.; KHRAISHEH, M. Impact of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) containers into bottled water in Qatar. Environmental Monitoring and Assessment, v. 189, p. 631-642, nov. 2017.

ATAKAN, D.; DURUKAN, I.; BEKTAS, S. Determination of antimony from polyethylene terephthalate in drinking water by solid floating organic drop microextraction and electrothermal atomization atomic absorption spectrometry. Analytical Letters, v. 49, n. 7, p. 1066-1078, 2016.

BRASIL. Instrução Normativa nº 25, de 23 de julho de 2009. Diário Oficial da União: seção 1, Brasília, p. 20, 23 jul. 2009a.

BRASIL. Resolução CONAMA nº 420, de 28 de dezembro de 2009. Diário Oficial da União: seção 249, Brasília, p. 81-84, 30 dez. 2009b.

BRASIL. Portaria MS nº 2.914, de 12 de dezembro de 2011. Diário Oficial da União: seção 1, Brasília, p. 39, 14 dez. 2011.

CERDA, A.; ARTOLA, A.; FONT, X.; BARRENA, R.; GEA, T.; SÁNCHEZ, A. Composting of food wastes: status and challenges. Bioresource Technology, v. 248, part. A, p. 57-67, jan. 2018.

CERETTI, E.; ZANI, C.; ZERBINI, I.; GUZZELLA, L.; SCAGLIA, M.; BERNA, V.; DONATO, F.; MONARCA, S.; FERETTI, D. Comparative assessment of genotoxicity of mineral water packed in polyethylene terephthalate (PET) and glass bottles. Water Research, v. 44, n. 5, p. 1462-1470, mar. 2010.

CHAPA-MARTÍNEZ, C. A.; HINOJOSA-REYES, L.; HERNÁNDEZ-RAMÍREZ, A.; RUIZ-RUIZ, E.; MAYA-TREVIÑO, L.; GUZMÁN-MAR, J. L. An evaluation of the migration of antimony from polyethyleneterephthalate (PET) plastic used for bottled drinking water. Science of the Total Environment, v. 565, p. 511-518, sep. 2016.

CINCOTTA, F.; VERZERA, A.; TRIPODI, G.; CONDURSO, C. Non‑intentionally added substances in PET bottled mineral water during the shelf‑life. European Food Research and Technology, v. 244, p. 433-439, aug. 2018.

DOGAN, C. E.; CEBI, N. Investigation of antimony, cobalt, and acetaldehyde migration into the drinking water in Turkey. Packaging Technology and Science, v. 32, n. 5, p. 239-246, mar. 2019.

DONAGEMA, Guilherme Kangussú; CAMPOS, David Vilas Boas de; CALDERANO, Sebastião Barreiros; TEIXEIRA, Wenceslau Geraldes; VIANA, João Herbert Moreira. Manual de métodos de análise de solo. 2ª ed. Rio de Janeiro: Embrapa Solos, 2011. ISBN 1517-2627.

FERRARI, D. G.; PRATSCHER, J.; ASPRAY, T. J. Assessment of the use of compost stability as an indicator of alkane and aromatic hydrocarbon degrader abundance in green waste composting materials and finished composts for soil bioremediation application. Waste Management, v. 95, p. 365-369, jun. 2019.

JESUS, A.; DESSUY, M. B.; HUBER, C. S.; ZMOZINSKI, A. V.; DUARTE, A. T.; VALE, M. G. R.; ANDRADE, J. B. Determination of antimony in pet containers by direct analysis of solid samples using graphite furnace atomic absorption spectrometry and leaching studies. Microchemical Journal, v. 124, p. 222-227, jan. 2016.

KOYUNCU, M.; ALWAZEER, D. Determination of trace elements, heavy metals, and antimony in polyethylene terephthalate-bottled local raw cow milk of Iğdır region in Turkey. Environmental Monitoring and Assessment, v. 191, p. 666-675, oct. 2019.

SILVA, Priscila Marques da. Desenvolvimento de metodologia para a determinação de álcoois superiores em álcool combustível, utilizando a técnica de cromatografia líquida de alta eficiência com detecção eletroquímica. 2005. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, 2005. Disponível em: https://repositorio.unesp.br/bitstream/handle/11449/97836/silva_pm_me_araiq.pdf?sequence=1&isAllowed=y. Acesso em: 4 nov. 2019.

USEPA - United States Environmental Protection Agency. Method 3051A - Microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, DC, USA, 2007. Disponível em: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. Acesso em: 18 nov. 2019.

USEPA - United States Environmental Protection Agency. Method 8315A - Determination of carbonyl compounds by high performance liquid chromatography (HPLC). Washington, DC, USA, 1996. Disponível em: https://www.epa.gov/sites/production/files/2015-07/documents/epa-8315a.pdf. Acesso em: 18 nov. 2019.

Published
2021-01-31
Section
Environment