Tolerance of soybean cultivars to aluminium toxicity at the initial phase

Keywords: Soil acidity, Exchangeable acidity, Abiotic stress, Glycine max L., Tolerance indexes

Abstract

Soybean genotypes have different levels of tolerance to the phytotoxic effects of aluminum (Al3+) and analysis of this characteristic may potentialize the use of acid soils. Current research investigated the effects of aluminum in the germination and initial growth of 25 soybean cultivars and the identification of more tolerant cultivars susceptible to toxicity by Al3+. Assay was conducted at the seed laboratory of the Universidade Estadual de Mato Grosso do Sul in Cassilândia, Brazil. Toxicity by Al3+ was imposed by exposition of seeds to a diluted solution with 15 μmol L–1 of Al3+, plus 1250 μmol L–1 calcium. The pH of solution with Al3+ was adjusted to 4.3 by HCl 0.5 mol L–1. Randomized experimental design comprised four replications with 50 seeds from 25 soybean cultivars and two growth conditions of seedlings (control or stress by Al3+), with a total of 50 treatments. Treatments were evaluated by tolerance indexes to stress (ITE) for seed germination, length and dry matter of seedlings. Toxicity by Al3+ reduced germination and initial growth rate in all the 25 soybean cultivars. Cultivars TMG 7061 IPRO, TMG 7063 IPRO, TMG 7067, HO Paranaíba IPRO and NS 7505 IPRO were indicated since they were bred in acid soils and had the greater tolerance to aluminum toxicity. Cultivars RK 815 IPRO, RK 8317 IPRO and ST 777 IPRO were classified as susceptible to aluminum toxicity and should not be recommended for breeding in acid soils.

Author Biographies

Rogério do Carmo Cabral, Universidade Estadual de Mato Grosso do Sul - UEMS
Discente de Mestrado, Programa de Pós-Graduação em Agronomia – Sustentabilidade na Agricultura, Universidade Estadual de Mato Grosso do Sul (UEMS), Cassilândia (MS), Brasil.
Alan Mario Zuffo, Universidade Estadual do Maranhão - UEMA
Professor do Curso de Agronomia da Universidade Estadual do Maranhão (UEMA), Balsas (MA), Brasil.
Simone Cândido Ensinas, Universidade Estadual de Mato Grosso do Sul - UEMS
Professora Adjunta IV e coordenadora do curso de Tecnologia em Produção Sucroalcooleira da Universidade Estadual de Mato Grosso do Sul, Unidade Universitária de Glória de Dourados (MS), Brasil.
Kátia Cristina da Silva, Universidade Estadual de Mato Grosso do Sul - UEMS
Discente de Mestrado, Programa de Pós-Graduação em Agronomia – Sustentabilidade na Agricultura, Universidade Estadual de Mato Grosso do Sul (UEMS), Cassilândia (MS), Brasil.
Fábio Steiner, Universidade Estadual de Mato Grosso do Sul - UEMS
Professor, Programa de Pós-Graduação em Agronomia – Sustentabilidade na Agricultura, Universidade Estadual de Mato Grosso do Sul (UEMS), Cassilândia (MS), Brasil.

References

BARBOSA DE FREITAS, L.; MAXIMINO FERNANDES, D.; MENDONÇA MAIA, S. C.; GUSTAVO PIVETTA, L.; DUTRA ZANOTTO, M. Tolerância de linhagens de mamona a alumínio. Pesquisa Agropecuária Tropical, v. 48, n. 3, p. 299-305, 2018. DOI: https://doi.org/10.1590/1983-40632018v4852425. Acesso em: 25 jan. 2020.

BOJÓRQUEZ-QUINTAL, E.; ESCALANTE-MAGAÑA, C.; ECHEVARRÍA-MACHADO, I.; MARTÍNEZ-ESTÉVEZ, M. Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 8, e1767, 2017. DOI: https://doi.org/10.3389/fpls.2017.01767. Acesso em: 25 jan. 2020.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: Mapa/ACS, 2009. 399p.

FARSHADFAR, E.; POURSIAHBIDI, M. M.; ABOOGHADAREH, A. R. P. Repeatability of drought tolerance indices in bread wheat genotypes. International Journal of Agriculture and Crop Sciences, v. 4, n. 13, p. 891-903, 2012. Disponível em: https://www.researchgate.net/publication/257208488_Repeatability_of_drought_tolerance_indices_in_bread_wheat_genotypes. Acesso em: 22 jan. 2020.

GIAVENO, G. D.; MIRANDA-FILHO, J. B.; FURLANI, P. R. Inheritance of aluminum tolerance in maize (Zea mays L.). Journal of Genetics & Breeding, v. 55, n. 1, p. 51-55, 2001. Disponível em: http://agris.fao.org/agris-search/search.do?recordID=IT2002062631. Acesso em: 21 jan. 2020.

KOPITTKE, P. M.; MOORE, K. L.; LOMBI, E.; GIANONCELLI, A.; FERGUSON, B. J.; BLAMEY, F. P. C.; MENZIES, N. W.; NICHOLSON, T. M.; MCKENNA, B. A.; WANG, P.; GRESSHOFF, P. M.; KOUROUSIAS, G.; WEBB, R. I.; GREEN, K.; TOLLENAERE, A. Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiology, v. 167, n. 4, p. 1402-1411, 2015. DOI: https://doi.org/10.1104/pp.114.253229. Acesso em: 20 jan. 2020.

MENOSSO, O. G.; COSTA, J. A.; ANGHINONI, I.; BOHNEN, H. Tolerância de genótipos de soja ao alumínio em solução. Pesquisa Agropecuária Brasileira, v. 35, n. 11, p. 2157-2166, 2000. DOI: https://doi.org/10.1590/s0100-204x2000001100006. Acesso em: 25 jan. 2020.

MOHAN, V. M.; ACHARY, V.; PARINANDI, N.; PANDA, B. Calcium channel blockers protect against aluminium-induced DNA damage and block adaptive response to genotoxic stress in plant cells. Mutation Research, v. 751, n. 2, p. 130-138, 2013. DOI: https://doi.org/10.1016/j.mrgentox.2012.12.008. Acesso em: 21 jan. 2020.

NAGHAVI, M. R.; POUR-ABOUGHADAREH, A.; KHALILI, M. Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Notulae Scientia Biologicae, v. 5, n. 3, p. 388-393, 2013. DOI: https://doi.org/10.15835/nsb539049. Acesso em: 20 jan. 2020.

PARTHEEBAN, C.; CHANDRASEKHAR, C. N.; JEYAKUMAR, P.; RAVIKESAVAN, R.; GNANAM, R. Effect of PEG induced drought stress on seed germination and seedling characters of maize (Zea mays L.) genotypes. International Journal of Current Microbiology and Applied Sciences, v. 6, n. 5, p. 1095-1104, 2017. DOI: https://doi.org/10.20546/ijcmas.2017.605.119. Acesso em: 20 jan. 2020.

SADE, H.; MERIGA, B.; SURAPU, V.; GADI, J.; SUNITA, M. S. L.; SURAVAJHALA, P.; KAVI-KISHOR, P. B. Toxicity and tolerance of aluminium in plants: tailoring plants to suit to acid soils. Biometals, v. 29, p. 187-210, 2016. DOI: https://doi.org/10.1007/s10534-016-9910-z. Acesso em: 23 jan. 2020.

SANTOS, C. V.; SILVA, N. S.; MAGALHÃES, J. V.; SCHAFFERT, R. E.; MENEZES, C. M. Desempenho de híbridos de sorgo granífero em solos com baixa e alta saturação por alumínio. Pesquisa Agropecuária Tropical, v. 48, n. 1, p. 12-18, 2018. DOI: https://doi.org/10.1590/1983-40632018v4848851. Acesso em: 22 jan. 2020.

STEINER, F.; ZOZ, T.; PINTO-JÚNIOR, A. S.; CASTAGNARA, D. D.; DRANSKI, J. A. L. Effects of aluminum on plant growth and nutrient uptake in young physic nut plants. Semina: Ciências Agrárias, v. 33, n. 5, p. 1779-1788, 2012. DOI: https://doi.org/10.5433/1679-0359.2012v33n5p1779. Acesso em: 23 jan. 2020.

TAHARA, K.; HASHIDA, K.; OTSUKA, Y.; OHARA, S.; KOJIMA, K.; SHINOHARA, K. Identification of a Hydrolyzable Tannin, Oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis. Plant Physiology, v. 164, n. 2, p. 683-693, 2014. DOI: https://doi.org/10.1104/pp.113.222885. Acesso em: 22 jan. 2020.

Published
2022-07-01
Section
Environment