Resposta da Fisális (Physalis peruviana L.) à inoculação e coinoculação de microrganismos promotores de crescimento de plantas
DOI:
https://doi.org/10.17765/2176-9168.2020v13n3p915-932Palabras clave:
Azospirillum brasilense, Bacillus amyloliquefaciens, Promoção de crescimento de plantas, Trichoderma asperellumResumen
Objetivou-se avaliar a resposta de Physalis peruviana L. frente à inoculação e coinoculação de diferentes microrganismos promotores de crescimento de planta (MPCP) em condição de campo. O delineamento foi em blocos casualizados, sendo quatro blocos e oito tratamentos. Os tratamentos do experimento referem-se à inoculação individual de Azospirillum brasilense (A), Bacillus amyloliquefaciens (B) e Trichoderma asperellum (T), diferentes combinações com esses MPCPs (T+B; T+A; B+A e T+A+B) e um tratamento controle (C). Aos 15 dias após o transplantio das mudas (DAT) avaliou-se os índices SPAD de clorofilas (Chl a, Chl b e Chl total) e aos 50 e 150 DAT avaliou-se a altura da parte aérea (APA). Os frutos foram colhidos aos 75 DAT até 120 DAT, sendo determinado o número de frutos por planta (NFP) e a massa média de frutos (MF). Amostras dos frutos foram submetidas a análises físico-químicas, com determinação de luminosidade (L*), cromaticidade (c*) e coloração externa (ºhue) dos frutos. Aos 270 DAT determinou-se a biomassa fresca da parte aérea (BFPA) e biomassa seca da parte aérea (BSPA). Não foram observadas diferenças significativas para as variáveis analisadas. As coinoculações de B+A e A+T apresentam as maiores médias para Chl a, enquanto que a combinação de T+A+B apresentou maiores médias para Chl total, ambos diferindo estatisticamente da inoculação de A. brasilense. Para a variável ºhue os tratamentos A, B e T+B apresentaram as menores médias, resultando melhor aspecto visual da coloração de frutos.Citas
ADESEMOYE, A. O.; TORBERT, H. A.; KLOEPPER, J. W. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, Switzerland, v. 58, n. 4, p. 921-929, 2009.
AHEMAD, M.; KIBRET, M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University – Science, USA, v. 26, n. 1, p. 1-20, 2014.
ALVARADO-SANABRIA, O. H.; ÁLVAREZ-HERRERA, J. G. Effect of indole-3-butyric acid and Trichoderma harzianum Rifai on asexual cape gooseberry propagation (Physalis peruviana L.). Agronomía Colombiana, Bogotá, v. 32, n. 3, p. 326-333, 2014.
COLLA, G.; ROUPHAEL, Y.; MATTIA, E. D.; EL-NAKHEL, C.; CARDARELLI, M. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture, Amsterdã, v. 95, p. 1706-1715, 2015.
CONTI, J. H.; MINAMI, K.; TAVARES, F. C. A. Produção e qualidade de frutos de diferentes cultivares de morangueiro em ensaios conduzidos em Atibaia e Piracicaba. Horticultura Brasileira, Vitória da Conquista, v. 20, n. 1, p. 10-17, 2002.
DATTA, M.; PALIT, R.; SENGUPTA, C.; PANDIT, M. K.; BANERJEE, S. Plant growth promoting rhizobacteria enhance growth and yield of chilli (Capsicum annuum L.) under field conditions. Australian Journal of Crop Science, Australia, v. 5, n. 5, p. 531-536, 2011.
EL-SAYED, S. F.; HASSAN, H. A.; EL-MOGY, M. M. Impact of bio- and organic fertilizers on potato yield, quality and tuber weight loss after harvest. Potato Research, Switzerland, v. 58, p. 67-81, 2015.
EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos. 3ª ed. Rio de Janeiro: Embrapa Solos. 2013, 353 p.
ESQUIVEL-COTE, R.; TSUZUKI-REYES, G.; RAMÍREZ-GAMA, R. M.; HUANTE, P. Efecto de la inoculación con azospirillum sp., y fertilización nitrogenada en el crecimiento y producción de jitomate (Solanum lycopersicum MILL.). Agroproductividad, Mexico, v. 10, n. 7, p. 88-93, 2017.
FENDRIHAN, S.; CONSTANTINESCU, F.; SICUIA, O.; DINU, S. Azospirillum strains as biofertilizers and biocontrole agents: a practical review. Journal of Advances in Agriculture, India, v. 7, n. 3, p. 1096-1108, 2017.
FERREIRA, D.F. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, vol.38, n.2, p.109-112, 2014.
FISCHER, G.; ALMANZA-MERCHÁN, P. J.; MIRANDA, D. Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, Jaboticabal, v. 36, n. 1, p. 001-015, 2014.
FU, Q.; LIU, C.; DING, N.; LIN, Y.; GUO, B. Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, Amsterdã, v. 97, n. 12, p. 1994-2000, 2010.
GONÇALVES, M. A.; PICOLOTTO, L.; AZEVEDO, F. Q.; COCCO, C.; ANTUNES, L. E. C. Qualidade de fruto e produtividade de pessegueiros submetidos a diferentes épocas de poda. Ciência Rural, Santa Maria, v. 44, n. 8, p. 1334-1340, 2014.
GÜL, A.; KIDOGLU, F.; TÜZEL, Y.; TÜZEL, I. H. Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite. Spanish Journal of Agricultural Research, Madrid, v. 6, n. 3, p. 422-429, 2008.
GURURANI, M. A.; UPADHYAYA, C. P.; BASKAR, V.; VENKATESH, J.; NOOKARAJU, A.; PARK, S. W. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation, Switzerland, v. 32, n. 2, p. 245-258, 2013.
HIDANGMAYUM, A.; DWIVEDI, P. Plant responses to Trichoderma spp. and their Tolerance to abiotic stresses: A review. Jounal of Pharmacognosy and Phytochemistry, New Delhi, v. 7, n. 1, 758-766, 2018.
JHA, C. K.; SARAF, M. Plant growth promoting rhizobacteria (PGPR): a review. Journal of Agricultural Research and Development, v. 5, n. 2, p. 0108-0119, 2015.
KHAN, A. L.; WAGAS, M.; KANG, S.M.; AL-HARRASI, A.; HUSSAIN, J.; AL-KHIZIRI, S.; ULLAH, L.; ALI, L.; JUNG, H. Y.; LEE, I. J. Bacterial Endophyte Sphingomonas sp. LK11 Produces Gibberellins and IAA and Promotes Tomato Plant Growth. Journal of Microbiology, Switzerland, v. 52, n. 8, 689-695, 2014.
KÖEPPEN, W. Climatología. 2º ed. Buenos Aires: Fondo de Cultura Económica, 1931.
LIMA, C. S. M.; GALARÇA, S. P.; BETEMPS, D. L.; RUFATO, A. R.; RUFATO, L. Avaliação física, química e fitoquímica de frutos de Physalis, ao longo do período de colheita. Revista Brasileira de Fruticultura, Jaboticabal, v. 34, n. 4, p. 1004-1012, 2012.
LIRA-SALDIVAR, R.; HERNÁNDEZ, A.; VALDEZ, L. A.; CÁRDENAS, A.; IBARRA, L.; HERNÁNDEZ, M.; RUIZ, N. Azospirillum brasilense and Glomus intraradices co-inoculation stimulates growth and yield of cherry tomato under shadehouse conditions. PHYTON, Buenos Aires, v. 83, p. 133-138, 2014.
LÓPEZ, D. B. S.; PERDOMO, F. A. R.; BUITRAGO, R. R. B. Respuesta de Physalis peruviana L. a la inoculación con bacterias solubilizadoras de fosfato. Revista Mexicana de Ciências Agrícolas, Mexico, v. 5, n. 5, p. 901-906, 2014.
MANGMANG, J. S.; DEAKER, R.; ROGERS, G. Azospirillum brasilense enhances recycling of fish effluent to support growth of tomato seedlings. Horticulturae, Switzerland, v. 1, p. 14-26, 2015.
MCGUIRE, R. G. Reporting of Objective Color Measurements. HortScience, USA, v. 27, n. 12, p. 1254-1255, 1992.
MEHTA, P.; WALIA, A.; KULSHRESTHA, S.; CHAUHAN, A.; SHIRKOT, C. K. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of Basic Microbiology, USA, v. 55, p. 33-44, 2015.
MENDIS, H. C.; THOMAS, V. P.; SCHWIENTEK, P.; SALAMZADE, R.; CHIEN, J. T.; WAIDYARATHNE, P.; KLOEPPER, J.; DE LA FUENTE; L. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions. Plos One, San Francisco, v. 13, n.2, e0193119, 2018.
MENNA, V. S.; MEENA, S. K.; VERMA, J. P.; KUMAR, A.; AERON, A.; MISHRA, P. K.; BISHT, J. K.; PATTANAYAK, A.; NAVEED, M.; DOTANIYA. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering, Amsterdã, v. 107, p. 8-32, 2017.
MOUMITA, D.; RAKHI, P.; CHANDAN, S.; KUMAR, P. M.; BANERJEE, S. Plant growth promoting rhizobacteria enhance growth and yield of chilli ('Capsicum annuum' L.) under field conditions. Australian Journal of Crop Science, Australian, v. 5, n. 5, p. 531-536, 2011.
MUNIZ, J.; KRETZSCHMAR, A. A.; RUFATO, L.; PELIZZA, T. R.; RUFATO, A. R.; MARCELO, T. A. General aspects of Physalis culltivation. Ciência Rural, Santa Maria, v. 44, n. 6, p. 964-970, 2014.
PUENTE, L. A.; PINTO-MUÑOZ, C. A.; CASTRO, E. S.; CORTÉS, M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, Amsterdã, v. 44, n. 7, p. 1733-1714, 2011.
PRASAD, M. R.; SAGAR, B. V.; DEVI, G. U.; TRIVENI, S.; RAO, S. R. K.; CHARI, K. D. Isolation and screening of bacterial and fungal isolates for plant growth promoting properties from tomato (Lycopersicon esculentum Mill.). International Journal of Current Microbiology and Applied Sciences, India, v. 6, n. 8, p. 753-761, 2017.
RAMOS, R. F.; PAVANELO, A. M.; PRADO, F. C.; SOUZA, S. S.; BETEMPS, D. L. Análise do índice relativo de clorofila em fisális através de diferentes medidores portáteis. Agrarian Academy, Goiânia, v. 5, n. 9, p. 10-18, 2018.
RICHARDSON, A. E.; BAREA, J. M.; MCNEILL, A. M.; PRIGENT-COMBARET, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, Switzerland, v. 321, n. 1-2, p. 305-339, 2009.
ROJAS-SOLÍS, D.; HERNÁNDEZ-PACHECO, C. E.; SANTOYO, G. Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in tomato (Physalis ixocarpa Brot. ex Horm.). Revista Chapingo Serie Horticultura, Mexico, v. 22, n. 1, p. 45-57, 2016.
SILVA, D. F.; VILLA, F.; BARP, F. K.; ROTILI, M. C. C.; STUMM, D. R. Conservação pós-colheita de fisális e desempenho produtivo em condições edafoclimáticas de Minas Gerais. Revista Ceres, Viçosa, v. 60, n. 6, p. 826-832, 2013.
SZILAGYI-ZECCHIN, V. J.; MÓGOR, A. F.; RUARO, L.; RÖDER, C. Crescimento de mudas de tomateiro (Solanum lycopersicum) estimulado pela bactéria Bacillus amyloliquefaciens subsp. plantarum FZB42 em cultura orgânica. Revista de Ciências Agrárias, Lisboa, v. 38, n. 1, p. 26-33, 2015.
VELASCO, J. V.; FERRERA-CERRATO, R.; ALMARAZ SUÁREZ, J. J. Vermicomposta, micorriza arbuscular y Azospirillum brasilense em tomate de cascara. Terra, v. 19, n. 3, p. 241-248, 2001.
WOO, S. L.; RUOCCO, M.; VINALE, F.; NIGRO, M.; MARRA, R.; LOMBARDI, N.; PASCALE, A.; LANZUISE, S.; MANGANIELLO, G.; LORITO, M. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, Sharjah, v. 8, p. 71-126, 2014.
WU, S.; ZHUANG, G.; BAI, Z.; CEN, Y.; XU, S.; SUN, H.; HAN, X.; ZHUANG, X. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium. Global Change Biology, USA, v. 24, n. 1, p. 2-14,2017.
YILDIZ, G.; ÍZLI, N.; ÜNAL, H.; UYLASER, V. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Techology, Switzerland, v. 52, n. 4, p. 2320–2327, 2015.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
A Revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com o intuito de manter o padrão culto da língua, respeitando, porém, o estilo dos autores. As opiniões emitidas pelos autores são de sua exclusiva responsabilidade.Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizado pelo periódico é a licença Creative Commons Attribution Creative Commons Atribuição 4.0 Internacional. São permitidos o compartilhamento (cópia e distribuição do material em qualquer meio ou formato) e adaptação (remixar, transformar, e criar a partir do trabalho, mesmo para fins comerciais), desde que lhe atribuam o devido crédito pela criação original.