Evaluation of the processing of three corn hybrids in ethanol production

Keywords: Bioenergy, Enzymatic hydrolysis, Fermentation, Saccharomyces cerevisiae, Zea mays

Abstract

With a growing demand for energy, Brazil seeks to diversify its sources of raw materials. In this context, corn becomes an important source of energy production, since it is mainly used in the production of fuel ethanol. With this, it is worth considering a possible influence of the type of hybrid used, due to the difference in grain productivity during the cultivation period, which may directly impact industrial/fermentative efficiency. Therefore, the present study evaluated the reflexes of the processing of three corn hybrids in the production of ethanol. The experimental design was completely randomized, with four replications for each treatment. The hybrids used were: Dekalb 636, Pioneer 3754 and Syngenta 8454. The grains were crushed and immersed in acidified water (pH≈5.5) in the proportion of 250 g.L-1, addition of α-amylase enzyme (LpHera® Novozymes), subjected to heating for 1 h (100°C). The pastes were cooled to room temperature (25±3°C), filtered through a 20-mashe sieve, adjusting the Brix to 16% and the pH to 4.5, resulting in the must. The musts were inoculated with the industrial yeast TR (Thermo-Resistant), with the addition of the glucoamylase enzyme (LpHera® Novozymes). Fermentations were maintained in B.O.D. at 33˚C, and the physiological development of the yeast was evaluated. At the end of the fermentation process (Brix≤1%), the samples were centrifuged, obtaining wine samples. For the pastes and musts obtained, the parameters of Brix, Total Reducing Sugars (TRS), pH, Total Acidity, Total Phenolic Compounds and Starch were evaluated. For the wines, the Brix content, Total Residual Reducing Sugars (TRRS), pH, Total Acidity, Starch, Glycerol and Alcoholic Content were evaluated. Through the obtained results, it was observed that for the hybrids Dekalb and Syngenta, the Brix content of the samples did not obtain significant difference. Among the treatments, it is worth highlighting the TRS index of the Syngenta hybrid, which values of around 14.6% were verified, twice as much organic acids and higher starch content in the paste. For the fermentation process, no significant differences were verified, considering the three corn hybrids. As for the results of alcohol content and glycerol, there was no significant difference between the hybrids. Thus, it is concluded that the fermentative process and ethanol production are not influenced by grains of processed maize hybrids. However, highlighting the hydrolysis process, significant differences were verified, regarding the availability of fermentable sugars and starch, indicating a significant effect of the corn hybrid used.

Author Biographies

Lucas Conegundes Nogueira, Universidade do Estado de Minas Gerais - UEMG
Mestrado em Ciências Ambientais pela Universidade do Estado de Minas Gerais, UEMG, Brasil.
Osania Emericiano Ferreira, Universidade do Estado de Minas Gerais
Universidade do Estado de Minas Gerais
Giovanni Uema Alcantara, Universidade do Estado de Minas Gerais - UEMG
Mestrado em Programa de Pós-Graduação em Ciências Ambientais pela Universidade Estadual de Minas Gerais - Unidade Frutal, UEMG, Frutal (MG), Brasil.
Gustavo Henrique Gravatim Costa, Universidade do Estado de Minas Gerais - UEMG
Professor Assistente na Universidade Estadual de Minas Gerais (UEMG), Frutal (MG), Brasil.

References

ALCANTARA, G. U. et al. Brazilian “flex mills”: ethanol from sugarcane molasses and corn mash. BioEnergy research, v. 13, n. 1, p. 229-236, 2020. Disponível em: https://doi.org/10.1007/s12155-019-10052-3.

BARBOSA, J. C.; MALDONADO JUNIOR, W. Experimentação Agronômica & AgroEstat: Sistema para Análises Estatísticas de Ensaios Agronômicos. FUNEP: Jaboticabal, 2015.

BREXÓ, R. P.; SANT’ANA, A. S. Impact and significance of microbial contamination during fermentation for bioethanol production. Renewable and Sustainable Energy Reviews, v. 73, p. 423-434, 2017. Disponível em: https://doi.org/10.1016/j.rser.2017.01.151.

CECCATO-ANTONINI, S. R. Microbiologia da fermentação alcoólica: a importância do monitoramento microbiológico em destilarias. São Carlos: EdUFSCar, 2017. E-book. Disponível em: http://livresaber.sead.ufscar.br:8080/jspui/handle/123456789/2767.

CHAVAN, S. M.; KUMAR, A.; JADHAV, S. J. Rapid quantitative analysis of starch in sugarcane juice. International Sugar Journal, Glamorgan, v. 93, n. 107, 1991.

CONAB. Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: Cana-de-açúcar – Segundo levantamento | Agosto/2022., v. 9, n. 2., p. 1-59., Brasília: Conab, 2022. Disponível em: https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar.

CRUZ, J. C.; PEREIRA FILHO, I. A.; GONTIJO NETO, M. M. Milho para silagem. Embrapa – Milho, 2021. Disponível em: https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/milho/producao/sistemas-diferenciais-de-cultivo/milho-para-silagem

CTC . Centro de Tecnologia Canavieira. Manual de métodos de análises para açúcar. Piracicaba, Centro de Tecnologia Canavieira, Laboratório de análises, 2005. Disponível em CD ROM.

PEREIRA FILHO, I. A.; BORGHI, E. Disponibilidade de cultivares de milho para o

mercado de sementes do Brasil: safra 2021/2022. Sete Lagoas: Embrapa Milho e Sorgo, 16 p., ISSN: 1518-4277, 2022.

FOLIN, O.; CIOCALTEU, V. On tyrosine and tryptophane determinations in proteins. The journal of biological chemistry, Bethesda, v. 73, n. 2, p. 627-50, 1927.

IRAM, A.; CEKMECELIOGLU, D.; DEMIRCI, A. Distillers’ dried grains with solubles (DDGS) and its potential as fermentation feedstock. Applied Microbiology and Biotechnology, n. 104, p. 6115-6128, 2020. https://doi.org/10.1007/s00253-020-10682-0

KRAFFT, M. J. et al. Maize silage pretreatment via steam refining and subsequent enzymatic hydrolysis for the production of fermentable carbohydrates. Molecules, v. 25, n. 24, 2020. Disponível em: https://doi.org/10.3390/molecules25246022.

LEE, S.S.; ROBINSON, F.M.; WONG, H.Y. Rapid determination of yeast viability.

Biotechnology Bioengineering Symposium, n. 11, 1981.

LNF. Açúcar e etanol, 2021. Disponível em: https://lnf.com.br/ Acesso em: 04 jul. 2021.

LOZANO, E. V. et al. Produção de Etanol a partir de diferentes híbridos de milho, 2017. Revista brasileira de engenharia de biossistemas. São Paulo: Tupã. v. 11, n. 3, 2020.

MUTTON, M. J. R. et al. Bioethanol production with different dosages of the commercial Acrylamide polymer compared to a Bioextract in clarifying sugarcane juice. Anais da Academia Brasileira de Ciências, v. 89, n. 4, pag. 3093-3102, 2017.

MUTTON, M. J. R. et al. Interaction between the production of ethanol and glycerol in fed-batch bioreactors. Brazilian Journal of Microbiology, v. 50, p. 389-394, 2019.

MUTTON, M. J. R. et al. The clarification of sugarcane juice and the use of CA-11 yeast produces better quality cachaça. Rev. Ciênc. Agron., v. 51, n. 4, 2020. Disponível em: <https://doi.org/10.5935/1806-6690.20200067>. Acesso em: 03 ago. 2022.

NOGUEIRA, L. C. et al. Extração de açúcares do grão de milho de 1,18mm em diferentes tempos de cozimento. p. 1162-1166. In: Anais do XII CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA EM INICIAÇÃO CIENTÍFICA - Blucher Chemical Engineering Proceedings, v. 1, n.4. São Paulo: Blucher, 2017.

NOGUEIRA, L. C. et al. Storage Time and Temperature of Corn Grains Affect the Ethanol Production. Sugar Tech, 2022. https://doi.org/10.1007/s12355-022-01199-z

Published
2023-11-30
Section
Agrobusiness