Influence of aluminum and magnesium in fermentation processes of hydrolized wastes of the banana tree for ethanol production

Keywords: Bioethanol, Mineral influence, Pseudo-stem of the banana tree

Abstract

Different processes in ethanol production has wide cost variations. Prime matter and the fermentation medium are a strong factor in production yield. Current assay evaluates the productivity of ethanol from hydrolyzed lignocellulose residues of the banana tree with the addition of different concentrations of magnesium and aluminum in the fermentation must. The banana tree´s pseudo-stem (PC) and the leaf mass were used. Wastes underwent pretreatment intercalated between base and acid and, afterwards, enzymatic hydrolysis of the solid fraction was performed. Fermentation assay was composed of two concentrations of aluminum sulfate (0, 50, 100 mg.L-1) and 3 concentrations of magnesium oxide (0, 1, 2 and 3 mg.L-1), with 10 ml of hydrolyzed must. Assay design was totally randomized with 3 replications. Different wastes under analysis (PC and MF) had high glucose rates (73.24 and 79.75 g.L-1 respectively), and showed the capacity of the material for ethanol production. There were significant differences in fermentation in the addition of magnesium and aluminum. Magnesium is capable of raising ethanol production up to 24% whilst aluminum may generate a reduction of 10% in production. However, there were no significant differences in the minerals´ interaction, or rather, magnesium did not suppress the toxic effect caused by aluminum.

Author Biographies

Rodrigo Xavier Nolasco, Universidade Federal do Tocantins
Mestre em Agroenergia - Universidade Federal do Tocantins, Palmas (TO), Brasil
Sérgio Donizeti Ascêncio, Universidade Federal do Tocantins
Doutor em Ciências (Bioquímica), Docente adjunto no Programa de Stricto sensu em Agroenergia - Universidade Federal do Tocantins, Palmas (TO), Brasil
Fabiano Ballin, Universidade Federal do Tocantins
Mestre em Agroenergia - Universidade Federal do Tocantins, Palmas (TO), Brasil
Ilsamar Mendes Soares, Universidade Federal do Tocantins
Doutor em em Biodiversidade e Biotecnologia da Amazônia Legal - Bionorte - Universidade Federal do Tocantins, Palmas (TO), Brasil
Odélio Joaquim da Costa, Universidade Federal do Tocantins
Doutorando em Biotecnologia - Universidade Federal do Tocantins, Palmas (TO), Brasil
Julianne Cutrim Nazareno, Universidade Federal do Tocantins
Mestre em Agroenergia - Universidade Federal do Tocantins, Palmas (TO), Brasil

References

ARANHA, A. D. Efeitos do Alumínio Sobre a fermentação alcoólica. 2002. 102f. Dissertação (Mestrado) - Escola Superior de Agricultura “Luís de Queiróz”, Universidade de São Paulo, Piracicaba, 2002.

ARIFIN, Y.; TANUDJAJA, E.; DIMYATI, A.; PINONTOAN, R. A Second Generation Biofuel from Cellulosic Agricultural By-product Fermentation Using Clostridium Species for Electricity Generation. Conference and Exhibition Indonesia Renewable Energy & Energy Conservation - Indonesia EBTKE CONEX 2013. Energy Procedia. 2014. p. 310-315.

BASSO, L. C.; BASSO, T. O.; ROCHA, S. N. Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: Bernardes, M. A. S. B(ed.). Biofuel production-recent developments and prospects. Rijeka: Intech, 2011. p. 85-100.

BATISTA, I. N. Estimativa da produção potencial de etanol de diferentes espécies de Braquiárias. 2016. 62 f. Dissertação (Mestrado) - Universidade Federal do Tocantins, Palmas, 2016.

BELLO, R. H.; SOUZA, O.; SELLIN, N.; MEDEIROS, S. H. W.; MARANGONI, C. Effect of the microfiltration phase on pervaporation of ethanol produced from banana residues. Comput. Aided Chem. Eng., v. 31, p. 820-824, 2012.

CHANDRASENA, G.; WALKER, G. M. Journal of the American Society of Brewing Chemists, 55, p. 24-29. 1997.

FAO - Food and Agriculture Organization. FAOSTAT: Banana Production by Countries 2017. Disponível em: http://www.fao.org/faostat/en/#data/QC Acesso em: 05 dez. 2019.

FOY, C. D.; GERLOFF, G. C. Response of Chlorella pyrenoidosa to aluminum and low pH. Journal Phycology, v. 8, n. 2, p. 268-271, 1972.

GABHANE, J. et al. Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Management, v. 34, n. 2, p. 498-503, 2014.

GUIDA, L. et al. Aluminum toxicity and binding to Escherichia coli. Archives of Microbiology, v. 156, n. 9, p. 507-512, 1991.

INGALE, S.; JOSHI, S. J.; GUPTE, A. Production of bioethanol using agricultural waste: banana pseudo stem. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology], v. 45, n. 3, p. 885-92, 2014.

JANG, J. et al. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed Saccharina japonica. Bioprocess Biosyst. Eng., v. 35, n. 1-2, p. 11-18, 2012.

JOHN, R. P. et al. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, v. 102, n. 1, p. 186-193, 2011.

LEWANDROWSKI, J.; ROSENFELD, J.; PAPE, D.; HENDRICKSON, T.; JAGLO, K.; MOFFROID, K. The greenhouse gas benefits of corn ethanol - assessing recent evidence, Biofuels, 2019. DOI: 10.1080/17597269.2018.1546488

KARAMUSHKA, V. I.; GADD, G. M. Influence of copper on proton efflux from Saccharomyces cerevisiae and the protective effect of calcium and magnesium. FEMS Microbiology Letters, v. 122, p. 33-38, 1994.

LALUCE, C. et al. Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability. Applied Microbiology and Biotechnology. Heidelberg. v. 83, p. 627-637, 2009.

MEINITA, M. D. N.; HONG, Y.; JEONG, G.; Comparison of sulfuric acid and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. v. 35, n. 1-2, p. 123-128, 2011.

OLIVEIRA, R. P. S. et al. Use of Sugar Cane Vinasse to Mitigate Aluminum Toxicity to Saccharomyces cerevisiae. Archives of Environmental Contamination and Toxicology, v. 57, p. 488-494, 2009.

PALÁCIOS, S. et al. Comparison of physicochemical pretreatments of banana peels or bioethanol production. Food Sci Biotechnol. v. 26, n. 4, p. 993-1001, 2017.

PEREIRA, D. G. S. Rendimentos da hidrólise enzimática e fermentação alcoólica de capim-elefante, capim-andropogon, capim-mombaça e bagaço de cana-de-açúcar para produção de etanol de segunda geração. Dissertação (Mestrado) - Universidade Federal de Viçosa, 2013.

REDDY, C. V. K.; SREERAMULU, D.; RAGHUNATH, M. Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Research International, v. 43, p. 285-288, 2010.

SANTOS, A. F. et al. Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova. n. 5, p. 1004-1012, 2012.

SCHREIER, B.; HOCKER, B. Engineering the enolase magnesium II binding site: implications for its evolution. Biochemistry, v. 49, p. 7582-7589, 2010.

SHARMA, N. et al. Optimization of fermentation parameters for production of ethanol from Kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian J. Microbiol., v. 47, p. 310-316, 2007.

SOUZA, R. B. et al. Mineral Composition of the Sugarcane Juice and its Influence on the Ethanol Fermentation. Applied Biochemistry and Biotechnology, v. 175, n. 1, p. 209-222, 2014b.

SOUZA, E. L.; LIEBLB, G. F.; MARANGONIA, C.; SELLINA, N.; MONTAGNOLIA, M. S.; SOUZA, O. Bioethanol from fresh and dried banana plant pseudostem. Chemical engineering transactions, v. 38, 2014a.

STEHLIK-THOMAS, V. et al. Zinc, Copper and Manganese Enrichment in Yeast Saccharomyces cerevisae. Food Technology and Biotechnology, v. 42, p. 115-120, 2004.

TROFIMOVA, Y.; WALKER, G.; RAPOPORT, A. Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration. FEMS Microbiol Lett, v. 308, p. 55-61, 2010.

TUN, N. M. et al. Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae. Metallomics, v. 5, p. 1068-1075, 2013.

VAN SOEST, P. J. Nutritional ecology of the ruminant. Ithaca: Cornell University, 1994. 476p.

VILLA-VÉLEZ, H. A. et al. Study of the specific heat capacity of biomass from banana waste for application in the second‐generation ethanol industry. American Institute of Chemical Engineers Environ Prog. v. 34, p. 1221-1228, 2015.

WANDERLEY, M. C. de A. et al. Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresource Technology, v. 128, p. 448-453, 2013.

ZEL, J.; SVETEK, J.; CRNE, H. Effects of aluminum on membrane fluidity of the mycorrhizal fungus Amanita muscaria. Physiology Plantarum, v. 89, 3, p. 172-176, 1993.

Published
2020-10-01
Section
Tecnologias Limpas