Caracterização genética, clínica e epidemiológica de pacientes com Covid-19 em uma região do Sul do Brasil

Palavras-chave: COVID-19, SARS-CoV-2, Enzima conversora de angiotensina, Variação genética, Comorbidade

Resumo

Caracterizar o perfil epidemiológico, clínico e genético de pacientes com Covid-19. Realizou-se um estudo observacional e transversal com voluntários que tiveram diagnóstico de Covid-19 no período de abril de 2020 a maio de 2021 no município de Santa Cruz do Sul (RS, Brasil), no qual foram coletados dados clínicos e epidemiológicos, além de amostras de sangue para a identificação de polimorfismos no gene ACE2. Foram recrutados 87 indivíduos e destes, 16,7% necessitaram de internação hospitalar, sendo a maioria do sexo masculino. A obesidade foi a comorbidade mais frequente, no entanto, doenças cardiovasculares, hipertensão e diabetes apresentaram maior significância quando associadas às internações. Em relação à características genéticas, entre os voluntários não foram encontrados polimorfismos no gene ACE2. A pesquisa sugere que o sexo masculino e presença de comorbidades são importantes fatores de risco para a severidade da Covid-19.

Biografia do Autor

Nayanna Dias Bierhals, Universidade de Santa Cruz do Sul - UNISC
Farmacêutica generalista pela Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul (RS), Brasil.
Erika Barreto Knod, Universidade de Santa Cruz do Sul - UNISC
Acadêmica do curso de Biomedicina na Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul (RS), Brasil
Augusto Ferreira Weber, Universidade Federal do Rio Grande do Sul - UFRGS
Doutorando em Ciências Biológicas: Bioquímica na Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brasil
Andreia Rosane de Moura Valim, Universidade de Santa Cruz do Sul - UNISC
Doutora em Biologia Celular e Molecular pela Universidade Federal do Rio Grande do Sul (UFRGS) e docente permanente do Programa de Pós-Graduação em Promoção da Saúde (PPGPS) da Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul (RS), Brasil
Lia Gonçalves Possuelo, Universidade de Santa Cruz do Sul - UNISC
Doutora em Ciências Biológicas: Bioquímica pela Universidade Federal do Rio Grande do Sul (UFRGS) e docente permanente do Programa de Pós-Graduação em Promoção da Saúde (PPGPS) da Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul (RS), Brasil
Jane Dagmar Pollo Renner, Universidade de Santa Cruz do Sul - UNISC
Doutora em Biologia Celular e Molecular pela Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) e coordenadora adjunta do Programa de Pós-Graduação em Promoção da Saúde (PPGPS) da Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul (RS), Brasil

Referências

1. COVID-19 Map - Johns Hopkins Coronavirus Resource Center [Internet]. [cited on March 2022]. available at : https://coronavirus.jhu.edu/map.html.

2. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 16 April 2020;181(2):271-280.e8. 10.1016/j.cell.2020.02.052

3. Teng S, Tang Q. ACE2 enhance viral infection or viral infection aggravate the underlying diseases. Comput Struct Biotechnol J. 6 August 2020;18:2100–6. 10.1016/j.csbj.2020.08.002

4. Zhang H, Wada J, Hida K, Tsuchiyama Y, Hiragushi K, Shikata K, et al. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem. 18 May 2001;276(20):17132–9. 10.1074/jbc.M006723200

5. Fan Z, Wu G, Yue M, Ye J, Chen Y, Xu B, et al. Hypertension and hypertensive left ventricular hypertrophy are associated with ACE2 genetic polymorphism. Life Sci. 15 May 2019;225:39–45. 10.1016/j.lfs.2019.03.059

6. Luo Y, Liu C, Guan T, Li Y, Lai Y, Li F, et al. Association of ACE2 genetic polymorphisms with hypertension-related target organ damages in south Xinjiang. Hypertens Res. May 2019;42(5):681–9. 10.1038/s41440-018-0166-6

7. Hussain M, Jabeen N, Raza F, Shabbir S, Baig AA, Amanullah A, et al. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol. September 2020;92(9):1580–6. 10.1002/jmv.25832

8. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 24 February 2020;6(1):1–4. 10.1038/s41421-020-0147-1

9. Stawiski EW, Diwanji D, Suryamohan K, Gupta R, Fellouse FA, Sathirapongsasuti F, et al. Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. 2020 [citado 25 de outubro de 2021]; Available at https://biorxiv.org/cgi/content/short/2020.04.07.024752

10. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 11 February 1988;16(3):1215. 10.1093/nar/16.3.1215

11. Wray S, Arrowsmith S. The Physiological Mechanisms of the Sex-Based Difference in Outcomes of COVID19 Infection. Front Physiol. 2021;12:627260. 10.3389/fphys.2021.627260

12. Özçelik Korkmaz M, Eğilmez OK, Özçelik MA, Güven M. Otolaryngological manifestations of hospitalised patients with confirmed COVID-19 infection. Eur Arch Otorhinolaryngol. 3 October 2020;1–11. 10.1007/s00405-020-06396-8

13. Fodoulian L, Tuberosa J, Rossier D, Boillat M, Kan C, Pauli V, et al. SARS-CoV-2 Receptors and Entry Genes Are Expressed in the Human Olfactory Neuroepithelium and Brain. iScience. December 2020;23(12):101839. 10.1016/j.isci.2020.101839

14. Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol. August 2014;35(3):347–69. 10.1016/j.yfrne.2014.04.004

15. Hopkinson NS, Rossi N, El-Sayed_Moustafa J, Laverty AA, Quint JK, Freidin M, et al. Current smoking and COVID-19 risk: results from a population symptom app in over 2.4 million people. Thorax. January 2021;thoraxjnl-2020-216422. 10.1136/thoraxjnl-2020-216422

16. Amorim CF, Góes FSR, Lima FLO, Gomes LNL, Almeida FC, Almeida PC, et al. Grupo ABO e a suscetibilidade a infecção por SARS-CoV-2: uma revisão de literatura. Hematol Transfus Cell Ther. November 2020;42:536. 10.1016/j.htct.2020.10.905

17. Mauvais-Jarvis F, Merz NB, Barnes PJ, Brinton RD, Carrero J-J, DeMeo DL, et al. Sex and gender: modifiers of health, disease, and medicine. The Lancet. 22 August 2020;396(10250):565–82. 10.1016/S0140-6736(20)31561-0

18. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. May 2020;94:91–5. 10.1016/j.ijid.2020.03.017

19. Wang Z, Deng H, Ou C, Liang J, Wang Y, Jiang M, et al. Clinical symptoms, comorbidities and complications in severe and non-severe patients with COVID-19: A systematic review and meta-analysis without cases duplication. Medicine (Baltimore). 25 November 2020;99(48):e23327. 10.1097/MD.0000000000023327

20. DGTI S-. SES-RS - Coronavirus [Internet]. [cited on 14 March 2022]. Available at: https://ti.saude.rs.gov.br/covid19/

21. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 28 March 2020;395(10229):1054–62. 10.1016/S0140-6736(20)30566-3

22. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. 2020 [cited on 25 October 2021]; Available at: https://biorxiv.org/cgi/content/short/2020.01.26.919985

23. Coto E, Avanzas P, Gómez J. The Renin–Angiotensin–Aldosterone System and Coronavirus Disease 2019. Eur Cardiol Rev. 9 March 2021;16:e07. 10.6061/clinics/2021/e2342

24. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT, et al. ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19. J Infect Dis. 23 July 2020;222(4):556–63. 10.1093/infdis/jiaa332

25. Benetti E, Tita R, Spiga O, Ciolfi A, Birolo G, Bruselles A, et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet. November 2020;28(11):1602–14. 10.1038/s41431-020-0691-z.

26. Calcagnile M, Forgez P, Iannelli A, Bucci C, Alifano M, Alifano P. ACE2 polymorphisms and individual susceptibility to SARS-CoV-2 infection: insights from an in silico study. 2020 [cited on 13 November 2021]; available at: https://biorxiv.org/cgi/content/short/2020.04.23.057042

27. Othman H, Bouslama Z, Brandenburg J-T, da Rocha J, Hamdi Y, Ghedira K, et al. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem Biophys Res Commun. 2020;702–8. 10.1016/j.bbrc.2020.05.028

28. Li Q, Cao Z, Rahman P. Genetic variability of human angiotensin‐converting enzyme 2 (hACE2) among various ethnic populations. Mol Genet Genomic Med [Internet]. August 2020 [cited on 10 February 2022];8(8). available at : https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7323111/

29. Darbani B. The Expression and Polymorphism of Entry Machinery for COVID-19 in Human: Juxtaposing Population Groups, Gender, and Different Tissues. Int J Environ Res Public Health [Internet]. May 2020 [cited on 10 February 2022];17(10). available at https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC7277542/

30. Van Den Broucke S. Why health promotion matters to the COVID-19 pandemic, and vice versa. Health Promot Int [Internet]. April 2020; 35(2):181-186.10.1093/heapro/daaa042

Publicado
2022-11-18
Seção
Artigos Originais